• Title/Summary/Keyword: Nanometer

Search Result 596, Processing Time 0.025 seconds

Vacuum Carbonization of Nanometer Tungsten Powder with Carbon Black

  • Luo, Ji;Lin, Tao;Guo, Zhi-meng;Jia, Chengchang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.442-443
    • /
    • 2006
  • Vacuum carbonization of nanometer tungsten powder was investigated in a simple designed apparatus. An X-Y recorder was used to plot differential thermal analysis (DTA) curves to determine starting temperature of carbonization of four samples with different specific surface area. The product was detected by X-ray Diffraction (XRD) and small angle X-ray scattering (SAXS). The results show that finer tungsten powder has lower starting temperature of carbonization. Tungsten powder, which BET surface area is $32.97m^2/g$, is completely carbonized to tungsten carbide at $1050^{\circ}C$, although the starting temperature is $865^{\circ}C$. Particle grows sharply before carbonization.

  • PDF

Nanometer-scale Imaging in Thin Films by Scanning Maxwell-stress Microscopy (주사형 맥스웰 응력 현미경을 이용한 박막의 Nanometer-scale 이미지)

  • 신훈규;유승엽;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.133-136
    • /
    • 1998
  • The scanning Maxwell-stress microscopy (SMM) is a dynamic noncontact electric force microscopy that allows simultaneous access to the electrical properties of molecular system such as surface potential, surface charge, dielectric constant and conductivity along with the topography. Here we report our recent results of its application to nanoscopic study of domain structures and electrical functionality in organic thin films prepared by the Langmuir-Blodgett technique.

  • PDF

New lithography technology to fabricate arbitrary shapes of patterns in nanometer scale (나노미터 크기의 임의 형상을 제작하기 위한 새로운 리소그래피 기술)

  • 홍진수;김창교
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.197-203
    • /
    • 2004
  • New lithography techniques are employed for the patterning of arbitrary shapes in nanometer scale. When, in the photolithography, the electromagnetic waves such as UV and X-ray are incident on the mask patterned in nanometer scale, the diffraction effect is unavoidable and degrades images of the mask imprinted on wafer. Only a convex lens is well-known Fourier transformer. It is possible to make the mask Fourier-transformed with the convex lens, even though the size of pattern on the mask is very large compared to the wavelength of electromagnetic wave. If the mask, modified according to new technique described in this paper, was placed at the front of the lens and was illuminated with laser beam, the nanometer-size patterns are only formed on the plane called Fourier transform plane. The new method presented here is quite simple setup and comparable with present and next generation lithographies such as UV/EUV photolithograpy and electron projection lithography when compared in attainable minimum linewidth. In this paper, we showed our theoretical research work in the field of Fourier optics, . In the near future, we are going to verify this theoretical work by experiments.

  • PDF

A 32nm and 0.9V CMOS Phase-Locked Loop with Leakage Current and Power Supply Noise Compensation

  • Kim, Kyung-Ki;Kim, Yong-Bin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.11-19
    • /
    • 2007
  • This paper presents two novel compensation circuits for leakage current and power supply noise (PSN) in phase locked loop (PLL) using a nanometer CMOS technology. The leakage compensation circuit reduces the leakage current of the charge pump circuit which becomes more serious problem due to the thin gate oxide and small threshold voltage in nanometer CMOS technology and the PSN compensation circuit decreases the effect of power supply variation on the output frequency of VCO. The PLL design is based on a 32nm predictive CMOS technology and uses a 0.9V power supply voltage. The simulation results show that the proposed PLL achieves a 88% jitter reduction at 440MHz output frequency compared to the PLL without leakage compensator and its output frequency drift is little to 20% power supply voltage variations. The PLL has an output frequency range of $40M{\sim}725MHz$ with a multiplication range of 11023, and the RMS and peak-to-peak jitter are 5ps and 42.7ps, respectively.

On Nanometer Positioning Control of Ultra-precision Hydrostatic Bearing Guided Feeding Table (초정밀 유정압 베어링 이송 테이블의 나노미터 위치결정 제어에 관한 연구)

  • Shim, Jongyoup;Park, Chun-Hong;Song, Chang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1313-1320
    • /
    • 2013
  • An ultraprecision multi-axis machine tool has been designed and developed in our laboratory. The machine tool has four moving axes which are composed of three linear axes and one rotational axis. It has a gantry type structure and the Z-axis is on the X-axis and the C-axis, on which a workpiece is located, is inside the Y-axis. This paper shows control performance improving method and procedure for the ultra-precision positioning control of a hydrostatic bearing guided linear axis. Through improvements of electrical and mechanical components for the control system such as control electronics and oil pumping systems, the control disturbing noise is decreased. Also by the frequency domain analysis of control system those problem-making system components are identified and modified with analytical methods. The controller is analyzed and designed from frequency domain data and system information. In the experimental control results the nanometer order control result is successfully presented.

Reflectivity Control at Substrate / Photoresist Interface by Inorganic Bottom Anti-Reflection Coating for Nanometer-scaled Devices

  • Kim, Sang-Yong;Kim, Yong-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • More accurate CD (Critical Dimension) control is required for the nanometer-scaled devices. However, since the reflectivity between substrate and PR (Photoresist) becomes higher, the CD (Critical Dimension) swing curve was intensified. The higher reflectivity also causes PR notching due to the pattern of sub-layer. For this device requirement, it was optimized for the thickness, refractive index(n) and absorption coefficient(k) in the bottom anti-reflective coating(BARC; SiON) and photoresist with the minimum reflectivity. The computational simulated conditions, which were determined with the thickness of 33 nm, n of 1.89 and k of 0.369 as the optimum condition, were successfully applied to the experiments with no standing wave for the 0.13um-device. At this condition, the lowest reflectivity was 0.44%. This optimum condition for BARC SiON film was applied to the process for 0.13um-device. The optimum SiON film as BARC to PR and sub-layer could be formed with the accurate CD control and no standing waver for the nanometer-scaled semiconductor manufacturing process.