• 제목/요약/키워드: Nanomesh

검색결과 5건 처리시간 0.023초

전기화학적 방법에 의한 타이타늄 분극특성 및 나노메쉬 형성 (Characteristics of titanium polarization curve and formation of nanomesh by electrochemical method)

  • 박진서;김부섭
    • 대한치과기공학회지
    • /
    • 제38권2호
    • /
    • pp.79-84
    • /
    • 2016
  • Purpose: The aim of this study was to make nanomesh on the surface of titanium by potentiostatic technique which was done at the suitable potential level. Methods: In order to find the suitable potential level, use a $25^{\circ}C$ NaCl, NaOH and NH4F solution of 1 M and 5 M as supporting electrolyte, working electrode(positive potential) was contact to the titanium specimen and counter electrode(negative potential) was contact to the Pt substrate. At the transpassive potential which was observed by potentiostatic technique, potentiostatic technique was done for 2hours. Results: As a result, 1 M NaOH solution was suitable as a supporting electrolyte, potentiostatic technique used a $25^{\circ}C$ NaOH solution of 1 M for 2hours, nanomesh was formed. Conclusion: The potentiostatic technique was used $25^{\circ}C$ NaOH solution of 1 M and 5 M as supporting electrolyte for 2hours. Nanomesh was built more uniform and fine in 1 M NaOH solution than 5 M NaOH solution.

탄소나노튜브 코팅의 마찰/마모 특성에 대한 나노메쉬 구조의 영향 (Effect of Nanomesh Structure Variation on the Friction and Wear Characteristics of Carbon Nanotube Coatings)

  • 김해진;김창래
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.315-319
    • /
    • 2020
  • In various fields, several studies based on carbon nanotubes (CNTs) have been conducted. The results of previous studies, wherein CNT coatings have been incorporated as solid lubricants, demonstrate that the friction and wear characteristics of CNT coatings can be improved through the absorption/dispersion of the contact pressure by controlling the stiffness of the nanomesh structure comprising CNT strands. In this study, the friction and wear characteristics of the following are compared: CNT coating formed by spin coating of CNT solution, compressed CNT coating, and compressed/heated CNT coating (wherein CNT strands are squeezed through compression and/or heating). It is observed that the friction coefficient of the CNT coating having the largest number of voids between the CNT strands is significantly lower than those of the compressed CNT coating and the compressed/heated CNT coating. The wear tracks of the compressed CNT coating and the compressed/heated CNT coating indicate that some parts become torn or adhere into a lump. However, in the case of the CNT coating, a smooth wear surface is formed by rubbing. Furthermore, as the void space between the squeezed and adhered CNT strands decreases, the resistance to structural deformation increases, thereby resulting in an increased frictional force and a wear pattern that becomes torn or forms a lump. Hence, the results obtained from this study corroborate that the friction and wear characteristics of CNT coatings can be enhanced through the absorption/dispersion of the contact pressure by controlling the stiffness of the nanomesh structure of CNT coatings.

Fabrication of Photo Sensitive Graphene Transistor Using Quantum Dot Coated Nano-Porous Graphene

  • 장야무진;이재현;최순형;임세윤;이종운;배윤경;황종승;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.658-658
    • /
    • 2013
  • Graphene is an attractive material for various device applications due to great electrical properties and chemical properties. However, lack of band gap is significant hurdle of graphene for future electrical device applications. In the past few years, several methods have been attempted to open and tune a band gap of graphene. For example, researchers try to fabricate graphene nanoribbon (GNR) using various templates or unzip the carbon nanotubes itself. However, these methods generate small driving currents or transconductances because of the large amount of scattering source at edge of GNRs. At 2009, Bai et al. introduced graphene nanomesh (GNM) structures which can open the band gap of large area graphene at room temperature with high current. However, this method is complex and only small area is possible. For practical applications, it needs more simple and large scale process. Herein, we introduce a photosensitive graphene device fabrication using CdSe QD coated nano-porous graphene (NPG). In our experiment, NPG was fabricated by thin film anodic aluminum oxide (AAO) film as an etching mask. First of all, we transfer the AAO on the graphene. And then, we etch the graphene using O2 reactive ion etching (RIE). Finally, we fabricate graphene device thorough photolithography process. We can control the length of NPG neckwidth from AAO pore widening time and RIE etching time. And we can increase size of NPG as large as 2 $cm^2$. Thin CdSe QD layer was deposited by spin coatingprocess. We carried out NPG structure by using field emission scanning electron microscopy (FE-SEM). And device measurements were done by Keithley 4200 SCS with 532 nm laser beam (5 mW) irradiation.

  • PDF

크기 조절이 가능한 은 나노입자 형성을 위한 박막의 열처리 효과 (Formation of Size-controllable Ag Nanoparticles on Si Substrate by Annealing)

  • 이상훈;이태일;문경주;명재민
    • 한국재료학회지
    • /
    • 제23권7호
    • /
    • pp.379-384
    • /
    • 2013
  • In order to produce size-controllable Ag nanoparticles and a nanomesh-patterned Si substrate, we introduce a rapid thermal annealing(RTA) method and a metal assisted chemical etching(MCE) process. Ag nanoparticles were self-organized from a thin Ag film on a Si substrate through the RTA process. The mean diameter of the nanoparticles was modulated by changing the thickness of the Ag film. Furthermore, we controlled the surface energy of the Si substrate by changing the Ar or $H_2$ ambient gas during the RTA process, and the modified surface energy was evaluated through water contact angle test. A smaller mean diameter of Ag nanoparticles was obtained under $H_2$ gas at RTA, compared to that under Ar, from the same thickness of Ag thin film. This result was observed by SEM and summarized by statistical analysis. The mechanism of this result was determined by the surface energy change caused by the chemical reaction between the Si substrate and $H_2$. The change of the surface energy affected on uniformity in the MCE process using Ag nanoparticles as catalyst. The nanoparticles formed under ambient Ar, having high surface energy, randomly moved in the lateral direction on the substrate even though the etching solution consisting of 10 % HF and 0.12 % $H_2O_2$ was cooled down to $-20^{\circ}C$ to minimize thermal energy, which could act as the driving force of movement. On the other hand, the nanoparticles thermally treated under ambient $H_2$ had low surface energy as the surface of the Si substrate reacted with $H_2$. That's why the Ag nanoparticles could keep their pattern and vertically etch the Si substrate during MCE.