• Title/Summary/Keyword: Nanoindentation test

Search Result 61, Processing Time 0.027 seconds

Improvement of Dao's Reverse Analysis and Determination of Representative Strain for Extracting Elastic-Plastic Properties of Materials in Analysis of Nanoindentation (나노압입공정 해석에서 재료의 탄소성 특성 도출을 위한 대표변형률의 결정과 Dao의 Reverse 해석의 향상)

  • Lee, Jung-Min;Lee, Chan-Joo;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • The newly developed analysis method for nanoindentation load-displacement curves are focused on not only obtaining elastic modulus and hardness values but also other mechanical properties, such as yield strength and strain hardening properties. Dao et al. developed a forward and reverse algorithm to extract the elasto-plastic properties of materials from the load-displacement curves obtained in nanoindentation test. These algorithms were only applicable for engineering metals (Poisson#s ratio 0.3) using the equivalent conical indenter of the Berkovich. However, the applicable metals are substantially limited because range of used in the finite element analysis is narrow. This study is designed to expand range of the applicable metals in the reverse algorithms established by Dao et al. and to improve the accuracy of that for extracting the elasto-plastic properties of materials. In this study, a representative strain was assumed to vary according to specific range of $E^*/{\sigma}_r$ and was defined as function of $E^*/{\sigma}_r$. Also, an initial unloading slope in reverse algorithms improved in this study was not considered as independent parameters of the load-displacement curves. The mechanical properties of materials for finite element analysis were modeled with the elastic modulus, E, the yield strength, ${\sigma}_y$, and the strain hardening exponents, n. We showed that the representative strain (0.033) suggested by Dao et al. was no longer applicable above the $E^*/{\sigma}_r$ of 400 and depended on values of $E^*/{\sigma}_r$. From these results, we constructed the dimensionless functions, in where the initial unloading slope was not included, for engineering metals up to $E^*/{\sigma}_r$ of 1500. These functions allow us to determine the mechanical properties with greater accuracy than Dao#s study.

Synthesis of WC-CrN superlattice film by cathodic arc ion plating system

  • Lee, Ho. Y.;Han, Jeon. G.;Yang, Se. H.
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.5
    • /
    • pp.421-428
    • /
    • 2001
  • New WC-CrN superlattice film was deposited on Si substrate (500$\mu\textrm{m}$) using cathodic arc ion plating system. The microstructure and mechanical properties of the film depend on the superlattice period (λ). In the X-ray diffraction analysis (XRD), preferred orientation of microstructure was changed according to various superlattice periods(λ). During the Transmission Electron Microscope analysis (TEM), microstructure and superlattice period (λ) of the WC - CrN superlattice film was confirmed. Hardness and adhesion of the deposited film was evaluated by nanoindentation test and scratch test, respectively. As a result of nanoindentation test, the hardness of WC - CrN superlattice film was gained about 40GPa at superlattice period (λ) with 7nm. Also residual stress with various superlattice period (λ) was measured on Si wafer (100$\mu\textrm{m}$) by conventional beam-bending technique. The residual stress of the film was reduced to a value of 0.2 GPa by introducing Ti - WC buffer layers periodically with a thickness ratio ($t_{buffer}$/$t_{buffer+superlattice}$ ). To the end, for the evaluation of oxidation resistance at the elevated temperature, CrN single layer and WC - CrN superlattice films with various superlattice periods on SKD61 substrate was measured and compared with the oxidation resistance.

  • PDF

Elastic Properties Evaluation of Thin Films on Flexible Substrates with Consideration of Contact Morphology in Nanoindentation (나노압입시험에서의 접촉형상 보정을 통한 유연소자 박막의 탄성특성 평가)

  • Kim, Won Jun;Hwang, Gyeong-Seok;Kim, Ju-Young;Kim, Young-Cheon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.83-88
    • /
    • 2020
  • The evolution of smartphones has led to numerous researches in the mechanical behavior of flexible devices. Due to the nano-size of the thin flexible film, nanoindentation is widely used to evaluate its mechanical behaviors, such as elastic modulus, and hardness. However, the commonly used Oliver-Pharr method is not suited for analyzing the indentation force-depth curves of hard films on soft substrates, as the effects of soft substrate is not considered theoretically. In this study, the elastic modulus of the thin film was evaluated with references to other reported models which include the substrate effect, and with calibration of the indentation depth for the pile-ups between the indenter and test surface. We fabricated test samples by deposition of amorphous metal film on polyimide and silicon wafers for verification of modified models.

Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nanoidentation Process (II) (나노인덴테이션 공정을 이용하여 극미세 패턴을 제작하기 위한 나노변형의 유한요소해석(II))

  • 이정우;윤성원;강충길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic re cover and pile-up were proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1 -l0nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

The Effects of Grain Boundary Structures on Mechanical Properties in Nanocrystalline Al Alloy

  • Jin Man Jang;Wonsik Lee;Se-Hyun Ko
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.971-975
    • /
    • 2021
  • This study investigates the effects of grain boundary structures on mechanical properties of nanocrystalline Al-0.7Mg-1.0Cu alloy using nanoindentation system. Grain boundary structure transforms to high angle grain boundaries from low angle ones with increase of heat treatment temperature and the transformation temperature is about 400℃. Young's modulus and hardness are higher in sample with low angle grain boundaries, while creep length is larger in sample with high angle ones. These results indicate that progress of plastic deformation at room temperature is more difficult in sample with low angle ones. During compression test at 200℃, strain softening occurs in all samples. However, yield strength in sample with low angle grain boundaries is higher twice than that with high angle ones due to higher activation energy for grain boundary sliding.

The Influence of Annealing Temperature on Mechanical Properties and Friction Coefficient of Coating Layer in Galvannealed Sheet Steel (용융아연도금강판에서 어닐링 온도변화에 따른 화합물화가 도금층 기계적 특성 및 마찰계수에 미치는 영향)

  • Jeon J.S.;Lee J. M.;;Kim D. J.;Kang Y.S.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.696-703
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel (GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken into account and studied by examining their variation with annealing temperature. To clarify the effect of surface features on the mechanical and frictional properties of GA, the several tests such as nanoindentation, Vickers hardness and nano scratch test were executed. The frictional characteristics of coating layers of GA were examined through nano scratch test in this study. The friction coefficient of coating layers on the surface was obtained from the nano scratch. The variation of friction coefficient versus velocity and pressure was taken into consideration in this paper. Hardness and elastic modulus of coating layer were increased as increasing annealing temperature.

The influence of annealing temperature on mechanical properties and friction coefficient of coating layer in galvannealed sheet steel (합금화 용융아연도금강판에서 어닐링 온도가 도금층 기계적 특성 및 마찰계수에 미치는 영향)

  • Jeon J. S.;Lee J. M.;Kim D. H.;Kim D. J.;Kang Y. S.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.113-117
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel (GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken into account and studied by comparing with the temperature variation on annealing in this study. To clarify the effect of surface features in the mechanical and frictional properties of GA, the several tests such as nanoindentation, victors hardness and nano scratch test were executed. The developed neural networks apply also to obtain reliable mechanical properties of the thin films. Load-displacement curve was computed by the analysis procedure and compared with experimental results. The frictional characteristics of coating layers in GA were verified though nano scratch test in this study. The friction coefficient of coating layers on the surface was obtained from the nano scratch. The variation of friction coefficient versus velocity and pressure was taken into consideration in this paper.

  • PDF

A study on Creep of Plate PMMA in Thermal-Nanoindentation Process for Hyperfine pit structure Fabrication (극미세 점 구조체 제작을 위한 열간나노압입 공정에서의 평판형 PMMA의 크립현상에 관한 연구)

  • Lee, E.K.;Jung, Y.N.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.273-276
    • /
    • 2008
  • Thermoplastic resin takes place stress relaxation and creep according to temperature and time. In room temperature, time dependent deformation (TDD) of polymer was carried out at previous study. In this study, it evaluates time dependent deformation to relate temperature. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is important to control pattern depth for change of indent depth by creep when using Nanoindenter. For evaluating TDD at high temperature, it is occurred thermal-nanoindentation test by changing hold time at maximum load. Temperature is putted at $90^{\circ}C$, hold time at maximum loads are putted at 1, 10, 50, 100, 200, 300 and 500s.

  • PDF

Study of Al-Alloy Foam Compressive Behavior Based on Instrumented Sharp Indentation Technology

  • Kim Am-Kee;Tunvir Kazi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.819-827
    • /
    • 2006
  • The stress-strain relation of aluminum (Al) alloy foam cell wall was evaluated by the instrumented sharp indentation method. The indentation in a few micron ranges was performed on the cell wall of Al-alloy foam having a composition or Al-3wt.%Si-2wt.%Cu-2wt.%Mg as well as its precursor (material prior to foaming). To extract the stress-stram relation in terms of yield stress ${\sigma}_y$, strain hardening exponent n and elastic modulus E, the closed-form dimensionless relationships between load-indentation depth curve and elasto-plastic property were used. The tensile properties of precursor material of Al-alloy foam were also measured independently by uni-axial tensile test. In order to verify the validity of the extracted stress-strain relation, it was compared with the results of tensile test and finite element (FE) analysis. A modified cubic-spherical lattice model was proposed to analyze the compressive behavior of the Al-alloy foam. The material parameters extracted by the instrumented nanoindentation method allowed the model to predict the compressive behavior of the Al-alloy foam accurately.