• 제목/요약/키워드: Nanofood material

검색결과 3건 처리시간 0.016초

나도 식품 소재와 나노 기능성 유제품 개발의 가능성 (Nanofood Materials and Approachable Development of Nanofunctional Dairy Products)

  • 곽해수;김동명
    • Journal of Dairy Science and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2004
  • Nanofood is advanced functional food which food industry and food scientist try to develop process foods in near future. To be developed nanofood, nanofood materials are needed, such as biodegradable nanosphere material, biotechnical nanofood material, and protein and nanofood material. There are some food industrial applications with nanotechnology, such as nanoencapsulation, nanomolecule making, nanoparticle and powder making, nano separation, and nano extration. We can find several nanofoods and nanofood materials on the market. In addition, dairy industry is also in the first step for the development of nanofunctional food. However, nanoencapsulations of lactase, iron, vitamin C, isoflavone are developed for functional milk. Dairy industry needs various nanofood materials to be advanced functional dairy products.

  • PDF

Preparation of Smart Probiotic Solid Lipid Nanoparticles (SLN) for Target Controlled Nanofood

  • Kim, Dong-Myung
    • Journal of Dairy Science and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.5-10
    • /
    • 2007
  • Ultrasonication was employed to prepare solid lipid nanoparticles (SLN) for smart probiotic nanoparticles as a nanofood. The model probiotic material, lactocin from Lactobacillus plantarum (CBT-LP2), was incorporated into SLN. The CBT-LP2 loaded SLN (CBT-LP2-SLN) were spherical in the photograph of scanning electron microscope (SEM). The particle size measured by laser diffraction (LD) was found to be $97.3{\pm}8.2nm$. Zeta potential analyzer suggested the zeta potential of LP-SLN was $-29.36{\pm}3.68$ mV in distilled water. The entrapment efficiency (EE%) was determined with the sephadex gel chromatogram and high-performance liquid chromatogram (HPLC), and up to 90.59% of nanofood was incorporated. Stability evaluation showed relatively long-term stability with only slight particle growth (P>0.05) after storage at room temperature for 4 weeks. Therefore, ultrasonication is demonstrated to be a simple, available and effective method to prepare high quality SLN loaded probiotic material.

  • PDF

Introduction to the Technology, Applications, Products, Markets, R&D, and Perspectives of Nanofoods in the Food Industry

  • Kim, Dong-Myong;Lee, Gee-Dong
    • Preventive Nutrition and Food Science
    • /
    • 제11권4호
    • /
    • pp.348-357
    • /
    • 2006
  • Nano is a unit that designates a billionth; accordingly nanotechnology could be described as the study and applications of the unique characteristics and phenomena of nanometer size materials. Applications of nanotechnology fall into two categories (one is top-down and the other is bottom-up). Currently, most products are the results of the top-down approach. Nanofoods have distinct functional characteristics stemming from the size, mass, chemical combinations, electrolytic features, magnetic properties of food sources at the nano level and which can be applied for safe absorption and delivery into the body. The greatest advantage of nanofood is that it permits the efficient use of small quantities of nutritional elements by increasing digestive absorption ability and by delivering natural elements without any change in their original characteristics. On the other hand, there are still unsolved problems, such as questions about safety and introduction of harmful material. The demand for new commercial food products is increasing, and commercial food producers are gradually combining nanotechnology and traditional food preparation methods. Nanofoods will improve our eating habits remarkably in the future. Tomorrow we will design nanofoods by shaping molecules and atoms. It will have a big impact on the food and food-processing industries. The future belongs to new products and new processes with the goals of customizing and personalizing consumer products. Nanotechnology is expected to be applied to not only foods themselves, but also to food packaging, production, safety, processing and storage. Also, it is believed that nanotechnology will be applied tracking finished products back to production facilities and even to specific processing equipment in those facilities. The aim of this study is the introduction of technology, applications, products, markets, R&D, and perspectives of nanofoods in the food industry.