• Title/Summary/Keyword: Nanodendrite

Search Result 2, Processing Time 0.016 seconds

Correlation between composition and structure of PtxNiy alloy nanodendrites

  • Lee, Young-Woo;Kwak, Da-Hee;Park, Kyung-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.165-170
    • /
    • 2016
  • We have synthesized $Pt_xNi_y$ alloy nanodendrites by a thermal decomposition method. The structure and composition of the as-prepared samples were characterized by field-emission transmission electron microscopy (FE-TEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray diffraction (XRD). The growth mode of the $Pt_xNi_y$ alloy samples synthesized as a function of an intended atomic fraction of Ni was likely to be strongly affected by and reduction (or oxidation) potentials and surface energy.

Synthesis of Si Nanowire/Multiwalled Carbon Nanotube Core-Shell Nanocomposites (실리콘 나노선/다중벽 탄소나노튜브 Core-Shell나노복합체의 합성)

  • Kim, Sung-Won;Lee, Hyun-Ju;Kim, Jun-Hee;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • Si nanowire/multiwalled carbon nanotube nanocomposite arrays were synthesized. Vertically aligned Si nanowire arrays were fabricated by Ag nanodendrite-assisted wet chemical etching of n-type wafers using $HF/AgNO_3$ solution. The composite structure was synthesized by formation of a sheath of carbon multilayers on a Si nanowire template surface through a thermal CVD process under various conditions. The results of Raman spectroscopy, scanning electron microscopy, and high resolution transmission electron microcopy demonstrate that the obtained nanocomposite has a Si nanowire core/carbon nanotube shell structure. The remarkable feature of the proposed method is that the vertically aligned Si nanowire was encapsulated with a multiwalled carbon nanotube without metal catalysts, which is important for nanodevice fabrication. It can be expected that the introduction of Si nanowires into multiwalled carbon nanotubes may significantly alter their electronic and mechanical properties, and may even result in some unexpected material properties. The proposed method possesses great potential for fabricating other semiconductor/CNT nanocomposites.