• Title/Summary/Keyword: Nanoarray

Search Result 4, Processing Time 0.016 seconds

Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM

  • Kim, Dae-Kwang;Lee, Hee-Gu;Jung, Hyung-Il;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.783-790
    • /
    • 2007
  • The immobilization of proteins and their molecular interactions on various polymer-modified glass substrates [i.e. 3-aminopropyltriethoxysilane (APTS), 3-glycidoxypropyltrimethoxysilane (GPTS), poly (ethylene glycol) diacrylate (PEG-DA), chitosan (CHI), glutaraldehyde (GA), 3-(trichlorosilyl)propyl methacrylate (TPM), 3'-mercaptopropyltrimethoxysilane (MPTMS), glycidyl methacrylate (GMA) and poly-l-lysine (PL).] for potential applications in a nanoarray protein chip at the single-molecule level was evaluated using prismtype dual-color total internal reflection fluorescence microscopy (dual-color TIRFM). A dual-color TIRF microscope, which contained two individual laser beams and a single high-sensitivity camera, was used for the rapid and simultaneous dual-color detection of the interactions and colocalization of different proteins labeled with different fluorescent dyes such as Alexa Fluor® 488, Qdot® 525 and Alexa Fluor® 633. Most of the polymer-modified glass substrates showed good stability and a relative high signal-to-noise (S/N) ratio over a 40-day period after making the substrates. The GPTS/CHI/GA-modified glass substrate showed a 13.5-56.3% higher relative S/N ratio than the other substrates. 1% Top-Block in 10 mM phosphate buffered saline (pH 7.4) showed a 99.2% increase in the blocking effect of non-specific adsorption. These results show that dual-color TIRFM is a powerful methodology for detecting proteins at the single-molecule level with potential applications in nanoarray chips or nano-biosensors.

Fabrication of a Superhydrophobic Surface with Adjustable Hydrophobicity and Adhesivity Based on a Silica Nanotube Array

  • Yu, Jae-Eun;Son, Sang-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3378-3382
    • /
    • 2012
  • A superhydrophobic surface with a water contact angle > $150^{\circ}$ has attracted great interest from both fundamental and practical aspects. In this study, we demonstrated that hydrophobicity of a silica nanotube (SNT) array can be easily controlled by the SNT aspect ratio. In addition, the adhesive and anti-adhesive properties were controlled without modifying the hydrophobic surface. Various silica structures on a polydimethylsiloxane substrate were prepared using the desired alumina template. Bundle-arrayed and bowl-arrayed silica surfaces exhibited extraordinary superhydrophobicity due to the large frontal surface area and hierarchical micro/nanostructure. As the strategy used in this study is biocompatible and a wide range of hydrophobicities are capable of being controlled by the SNT aspect ratio, a hydrophobic surface composed of an SNT array could be an attractive candidate for bioapplications, such as cell and protein chips.

Single C-Reactive Protein Molecule Detection on a Gold-Nanopatterned Chip Based on Total Internal Reflection Fluorescence

  • Heo, Yunmi;Lee, Seungah;Lee, Sang-Won;Kang, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2725-2730
    • /
    • 2013
  • Single C-reactive protein (CRP) molecules, which are non-specific acute phase markers and products of the innate immune system, were quantitatively detected on a gold-nanopatterned biochip using evanescent field-enhanced fluorescence imaging. The $4{\times}5$ gold-nanopatterned biochip (spot diameter of 500 nm) was fabricated by electron beam nanolithography. Unlabeled CRP molecules in human serum were identified with single-molecule sandwich immunoassay by detecting secondary fluorescence generated by total internal reflection fluorescence (TIRF) microscopy. With decreased standard CRP concentrations, relative fluorescence intensities reduced in the range of 33.3 zM-800 pM. To enhance fluorescence intensities in TIRF images, the distance between biochip surface and CRP molecules was optimally adjusted by considering the quenching effect of gold and the evanescent field intensity. As a result, TIRF only detected one single-CRP molecule on the biochip the first time.

Fabrication of Superhydrophobic molecules Nanoarray by Dip-pen Nanolithography (나노리소그라피 기술을 이용한 초소수성 불소 실란 분자의 나노패턴 제조)

  • Yeon, Kyung-Heum;Kang, Pil-Seon;Kim, Kyung-Min;Lim, Jun-Hyurk
    • Journal of Adhesion and Interface
    • /
    • v.19 no.4
    • /
    • pp.163-166
    • /
    • 2018
  • Dip-pen nanolithography(DPN) is an atomic force microscope (AFM) based method of generating nano- or micro-patterns. This technique has been used to transfer various ink materials on the substrate through water meniscus formed between AFM tip and the substrate surface. In this study, the heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane (HDFDTMS) ink materials were coated on the pre-coated AFM tip surface with the HDFDTMS molecules. When the tip brought into contact with the hydroxyl-functionalized silicon surface, HDFDTMS ink molecules have been successfully transported from the tip onto the surface via water meniscus. The created array and passivation area showed stable structures on the surface, and the transport of ink materials from the AFM tip to the surface followed linear increase in pattern size with contact time.