• 제목/요약/키워드: NanoFluid

검색결과 216건 처리시간 0.027초

VALVELSS 압전펌프 진동 해석 및 특성 (Vibration analysis of characteristics and valveless Type Piezoelectric micro-pump)

  • 임종남;오진헌;임기조;김현후
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.185-185
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump the highest pressure level of 83.4kHz.

  • PDF

플래핑 운동을 적용한 자율무인잠수정(AUV)의 날개형상 및 운동 최적설계 (Optimization Design of Hydrofoil Shape and Flapping Motion in AUV(Autonomous Underwater Vehicle))

  • 김일환;최중선;박경현;이도형
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.24-31
    • /
    • 2013
  • The motion of living organisms such as birds, fishes, and insects, has been analyzed for the purpose of the design of MAV(Micro Air Vehicle) and NAV(Nano Air Vehicle). In this research, natural motion was considered to be applied to the determination of the geometry and motion of AUV(Autonomous Underwater Vehicle). The flapping motion of a number of hydrofoil shapes in AUV was studied, and at the same time, the optimization of the hydrofoil shape and flapping motion was executed that allow the highest thrust and efficiency. The harmonic motion of plunging and pitching of NACA 4 digit series models, was used for the numerical analysis. The meta model was made by using the kriging method in Optimization method and the experimental points of 49 were extracted for the OA(Orthogonal array) in DOE(Design of experiments). Parametric study using this experimental points was conducted and the results were applied to MGA(Micro Genetic Algorithm). The flow simulation model was validated to be an appropriate tool by comparing with experimental data and the optimized shape and motion of AUV was turned out to produce highest thrust and efficiency.

Preparation of a Porous Chitosan/Fibroin-Hydroxyapatite Composite Matrix for Tissue Engineering

  • Kim, Hong-Sung;Kim, Jong-Tae;Jung, Young-Jin;Ryu, Su-Chak;Son, Hong-Joo;Kim, Yong-Gyun
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.65-73
    • /
    • 2007
  • Chitosan, fibroin, and hydroxyapatite are natural biopolymers and bioceramics that are biocompatible, biodegradable, and resorb able for biomedical applications. The highly porous, chitosan-based, bioceramic hybrid composite, chitosanlfibroin-hydroxyapatite composite, was prepared by a novel method using thermally induced phase separation. The composite had a porosity of more than 94% and exhibited two continuous and different morphologies: an irregularly isotropic pore structure on the surface and a regularly anisotropic multilayered structure in the interior. In addition, the composite was composed of an interconnected open pore structure with a pore size below a few hundred microns. The chemical composition, pore morphology, microstructure, fluid absorptivity, protein permeability, and mechanical strength were investigated according to the composition rate of bioceramics to biopolymers for use in tissue engineering. The incorporation of hydroxyapatite improved the fluid absorptivity, protein permeability, and tenacity of the composite while maintaining high porosity and a suitable microstructure.

자동차 엔진용 폐열 회수 시스템의 효율 향상방안에 관한 연구 (A Study on the Way to Improve Efficiency of a Waste Heat Recovery System for an Automotive Engine)

  • 차원심;최경욱;김기범;이기형
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.76-81
    • /
    • 2012
  • In recent, there are tremendous efforts to apply co-generation concept in automobile to improve its thermal efficiency. The co-generation is basically a simple Rankine Cycle that uses the waste heat from the engine exhaust and coolant for heat source. In spite of developed nano technology and advance material science, the bulky co-generation system is still a big concern in automotive application. Therefore, the system should be effectively designed not to add much weight on the vehicle, but the capacity of the waste heat recovery should be still large. With such a goal in mind, the system thermal efficiency was investigated in terms of the system operation condition and working fluid. This paper provides a direction for the optimal design of the automotive co-generation system.

Convective heat transfer of MWCNT / HT-B Oil nanofluid inside micro-fin helical tubes under uniform wall temperature condition

  • Kazemia, M.H.;Akhavan-Behabadi, M.A.;Nasr, M.
    • Advances in nano research
    • /
    • 제2권2호
    • /
    • pp.99-109
    • /
    • 2014
  • Experiments are performed to investigate the single-phase flow heat transfer augmentation of MWCNT/HT-B Oil in both smooth and micro-fin helical tubes with constant wall temperature. The tests in laminar regime were carried out in helical tubes with three curvature ratios of 2R/d=22.1, 26.3 and 30.4. Flow Reynolds number varied from 170 to 1800 resulting in laminar flow regime. The effect of some parameters such as the nanoparticles concentration, the dimensionless curvature radius (2R/d) and the Reynolds number on heat transfer was investigated for the laminar flow regime. The weight fraction of nanoparticles in base fluid was less than 0.4%. Within the applied range of Reynolds number, results indicated that for smooth helical tube the addition of nanoparticles to the base fluid enhanced heat transfer remarkably. However, compared to the smooth helical tube, the average heat transfer augmentation ratio for finned tube was small and about 17%. Also, by increasing the weight fraction of nanoparticles in micro-fin helical tubes, no substantial changes were observed in the rate of heat transfer enhancement.

Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

  • Mahanthesh, Basavarajappa;Gireesha, Bijjanal Jayanna;PrasannaKumara, Ballajja Chandra;Shashikumar, Nagavangala Shankarappa
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1660-1668
    • /
    • 2017
  • The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

HR polishing에 의한 광경화성수지 성형용 글래스 몰드의 투과율 및 표면품위 향상 (Improvement of Transmittance and Surface Integrity of Glass Mold for light-hardening polymer Using MR Polishing)

  • 이정원;김동우;조명우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.78-83
    • /
    • 2009
  • In general, Light-hardening polymer was used UV nanoimprint technology. A light-hardening polymer was had the problem of poor hardness, durability. In order to overcome the problem of polymer, inter change optical glass. However glass is very manufacture and a lowering of standars transmittance. In order to glass recover was necessary polishing process. The process is magnetorheological fluids polishing. MR polishing has been developed as a new precision finishing technique to obtain a fine surface. Hence, Magnetorheological fluids has been used for micro polishing to get micro parts. This polishing process guarantees high polishing quality by controlling the fluid density electrically. The applied material in experiments is fused silica glass. Fused silica glass is widely used in the optical field because of high degree of purity. For MR polishing experiments, MR fluid was composed with DI-water, carbonyl iron and nano slurry ceria. The wheel speed and electric current were chosen as the variables for analyzing the characteristics of MR polishing process. Outstanding surface roughness of Ra=1.58nm was obtained on the fused silica glass specimen. And originally glass transmittance was recover on the fused silica glass.

  • PDF

Multiphase Simulation of Rubber and Air in the Cavity of Mold

  • Woo, Jeong Woo;Yang, Kyung Mi;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.263-268
    • /
    • 2016
  • In the polymer shaping process that uses molds, the quality of the molded products is determined not only by the flow of the (molten) polymer but also by the air venting in the cavity. Inadequate air venting in the cavity can cause defects in the product, such as voids, short shot, or black streaks. As it is critical to consider the location and size of the vents for proper venting of the air in the cavity, a method that predicts the flow of air and material is required. The venting of air by the flow of rubber inside the cavity was simulated by using a multi-phase computational fluid dynamics method. Through computer simulation, the interface of rubber and air over time was predicted. Then, the velocity and pressure distribution of the venting air were observed. Our research proposes a fundamental method for analyzing the multi-phase flow of polymer materials and air inside the cavity of a mold.

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Controlled Release of Cyclosporin A from Liposomes-in-Microspheres as an Oral Delivery System

  • Park, Hee-Jung;Lee, Chang-Moon;Lee, Yong-Bok;Lee, Ki-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.526-529
    • /
    • 2006
  • The aim of this study was to prepare cyclosporin A-loaded liposome (CyA-Lip) as an oral delivery carrier, with their encapsulation into microspheres based on alginate or extracellular polysaccharide (EPS) p-m10356. The main advantage of liposomes in the microspheres (LIMs) is to improve the restricted drug release property from liposomes and their stability in the stomach environment. Alginate microspheres containing CyA-Lip were prepared with a spray nozzle; CyA-Liploaded EPS microspheres were also prepared using a w/o emulsion method. The shape of the LIMs was spherical and uniform, and the particle size of the alginate-LIMs ranged from 5 to $10\;{\mu}m$, and that of the EPS-LIMs was about $100\;{\mu}m$. In a release test, release rate of CyA in simulated intestinal fluid (SIF) from the LIMs was significantly enhanced compared to that in simulated gastric fluid (SGF). In addition, the CyA release rates were slower from formulations containing the liposomes compared to the microspheres without the liposome. Therefore, alginate-and EPS-LIMs have the potential for the controlled release of CyA and as an oral delivery system.