• Title/Summary/Keyword: Nano-wear

Search Result 234, Processing Time 0.031 seconds

Electrodeposition of Nano TiO2 Powder Dispersed Nickel Composite Coating (전기도금법을 이용한 나노 산화티타늄 니켈 복합도금에 관한 연구)

  • Park, So-Yeon;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.65-69
    • /
    • 2012
  • Composite coating can be manufactured during the electroplating with the bath containing a suspension of particles: ceramic, polymer, nanopowders. Improvement of hardness, wear resistance, corrosion resistance and lubrication properties are well-known advantage of composite coating. In this study, nano $TiO_2$ powder dispersed Ni composite plating was investigated. The improvement of surface hardness and photo decomposition effects can be expected in this coating. Zeta potential was measured with pH. The effect of ultrasonication time and types of ultrasonicator were studied to minimize the agglomeration of $TiO_2$ nanopowders in the electrolyte. Optimum conditions for nano $TiO_2$ dispersed Ni composite coating were $40mA/cm^2$ of current density, pH 3.5, and $50^{\circ}C$. At these conditions, $TiO_2$ nanoparticles contents in the Ni deposit was 15-20 at.%.

Bone-like Apatite Formation on Ti-6Al-4V in Solution Containing Mn, Mg, and Si Ions after Plasma Electrolytic Oxidation in the SBF Solution

  • Lim, Sang-Gyu;Choe, Han Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.157-157
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. They can directly connect to bone. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electrochemical oxidation is a novel method to form ceramic coatings on light metals such as titanium and its alloys. This is an excellent reproducibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magnesium (Mg) has a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth and development. Manganese influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Insufficience of Mn in human body is probably contributing cause of osteoporosis. Pre-studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The objective of this work was to study nucleation and growth of bone-like apatite formation on Ti-6Al-4V in solution containing Mn, Mg, and Si ions after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages. And bone-like apatite formation was carried out in SBF solution for 1, 3, 5, and 7 days. The morphologies of PEO-treated Ti-6Al-4V alloy in containing Mn, Mg, and Si ions were examined by FE-SEM, EDS, and XRD.

  • PDF

Electrochemical Behavior of Plasma Electrolytic Oxidized Films Formed in Solution Containing Mn, Mg and Si Ions

  • Lim, Sang-Gyu;Choe, Han Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.80-80
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electro-chemical oxidation is a novel method to form ceramic coatings on light metals such as tita-nium and its alloys. This is an excellent re-producibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magne-sium (Mg) have a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth, and development. Mn influences regulation of bone remodeling be-cause its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Pre-studies have shown that Mg plays very im-portant roles in essential for normal growth and metabolism of skeletal tissue in verte-brates and can be detected as minor constitu-ents in teeth and bone. In this study, Electrochemical behavior of plasma electrolytic oxidized films formed in solution containing Mn, Mg and Si ions were researched using various experimental in-struments. A series of Si-Mn-Mg coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 5 and 10%. The potentiodynamic polarization and AC impedance tests for corrosion behav-iors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV. Also, AC impedance was performed at frequencies anging from 10MHz to 100kHz for corrosion resistance.

  • PDF

Mechanical Properties and Thermal Stability of Ti0.5Al0.5N/CrN Nano-multilayered Coatings (Ti0.5Al0.5N/CrN 나노 다층 박막의 기계적 성질과 열적 안정성)

  • Ahn, Seung-Su;Park, Jong-Keuk;Oh, Kyung-Sik;Chung, Tai-Joo
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.406-413
    • /
    • 2020
  • Ti0.5Al0.5N/CrN nano-multilayers, which are known to exhibit excellent wear resistances, were prepared using the unbalanced magnetron sputter for various periods of 2-7 nm. Ti0.5Al0.5N and CrN comprised a cubic structure in a single layer with different lattice parameters; however, Ti0.5Al0.5N/CrN exhibited a cubic structure with the same lattice parameters that formed the superlattice in the nano-multilayers. The Ti0.5Al0.5/CrN multilayer with a period of 5.0 nm exceeded the hardness of the Ti0.5Al0.5N/CrN single layer, attaining a value of 36 GPa. According to the low-angle X-ray diffraction, the Ti0.5Al0.5N/CrN multilayer maintained its as-coated structure up to 700℃ and exhibited a hardness of 32 GPa. The thickness of the oxidation layer of the Ti0.5Al0.5N/CrN multilayered coating was less than 25% of that of the single layers. Thus, the Ti0.5Al0.5N/CrN multilayered coating was superior in terms of hardness and oxidation resistance as compared to its constituent single layers.

Rolling Contact Fatigue and Residual Stress Properties of SAE52100 Steel by Ultrasonic Nano-Crystalline Surface Modification (UNSM) (초음파 나노표면 개질처리를 통한 베어링강의 회전접촉피로 및 잔류응력 특성에 대한 연구)

  • Lee, Changsoon;Park, Ingyu;Cho, Insik;Hong, Junghwa;Jhee, Taegu;Pyoun, Youngsik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • To investigate the effect of ultrasonic nano-crystalline surface modification (UNSM) treatment on rolling contact fatigue and residual stress properties of bearing steels, this paper carried out a rolling contact fatigue test, measured residual stress and retained austenite, performed a wear test, observed microstructure, measured micro hardness, and analyzed surface topology. After the UNSM treatment, it was found that the surface became minute by over $100{\mu}m$. The micro surface hardness was changed from Hv730~740 of base material to Hv850~880 with about 20% improvement, and hardening depth was about 1.3 mm. The compressive residual stress was measured as high as -700~-900 MPa, and the quantity of retained austenite was reduced to 27% from 34%. The polymet RCF-6 ball type rolling contact fatigue test showed over 4 times longer fatigue lifetime after the UNSM treatment under 551 kgf load and 8,000 rpm. In addition, this paper observed the samples, which went through the rolling contact fatigue test, with OM and SEM, and it was found that the samples had a spalling phenomenon (the race way is decentralized) after the UNSM treatment. However, before the treatment, the samples had excessive spalling and complete exploration. Comparison of the test samples before and after the UNSM treatment showed a big difference in the fatigue lifetime, which seems to result from the complicated effects of micro particles, compressive residual stress, retained austenite, and surface topology.

Characterization of Electrospun Nylon 66 Fiberwebs (전기방사 나일론 66 섬유웹의 특성화)

  • Lee, Young-Soo;Park, Sung-Shin;Lee, Chung-Jung;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.165-168
    • /
    • 2003
  • Nylon was the first commercialized synthetic fiber. It is a polyamide, derived from a diamine and dicarboxylic acid. The nylon fiber has outstanding durability and excellent physical properties such as stiffness, wear and abrasion resistance, friction coefficient and chemical resistance. Due to these properties of nylon 66, nano-sized fibers are produced by electrospinning method in this study. During the past years the nylon 66 fibers have been prepared by conventional melt spining. (omitted)

  • PDF

Non-lithographic Micro-structure Fabrication Technology and Its Application (Non-lithography 방법에 의한 마이크로 구조물 제작 및 응용)

  • 성인하;김진산;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.956-959
    • /
    • 2002
  • In this work, a new non-lithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photo-lithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

  • PDF

An Experimental Study of Valve Seat Material Galling Characteristics in Waterworks

  • Park, Sung-Jun;Kim, Young-Tae;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • Environmental contamination creates shortages of potable water. In such situations, the leakage of water due to breakage or aging of rubber valve seats is a serious problem. Rubber is apt to break when it is placed between two materials that contact each other. One way to avoid water leakage due to rubber damage and breakdown is to replace the rubber with metal, which is currently taking place in water distribution systems. In tribology, a severe form of wear is characterized by local macroscopic material transfer or removal, or by problems with sliding protrusions when two solid surfaces experience relative sliding under load. One of the major problems when metal slides is the occurrence of galling. Experimentally, various conditions influence incipient galling, such as hardness, surface roughness, temperature, load, velocity, and the external environment. This study sought to verify the galling tendencies of metal according to its hardness, surface roughness, load, and sliding velocity, and determine the quantitative effect of each factor on the galling tendencies.

A Study on Head-Disk Interactions at Ultra-low Flying Height in Contact Start-Stop (Contact Start-Stop 방식에서의 극저부상 높이에서 Head-Disk Interface Interactions 연구)

  • 조언정
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • The height of laser bumps has been considered as the limit of the minimum flying height in the contact start-stop (CSS) of hard disk drives. In this paper, tribological interactions at flying height under laser bumps are investigated in a spin stand for development of ultra-low flying head-disk interface. With the reduction of the spinning speed in a spin stand, the flying height is decreased under the height of laser bumps and, then, head-disk interactions are investigated using AE and stiction/friction signals. During seek tests and 20000 cycle-sweep tests, AE and stiction/friction signals are not significantly changed and there are no catastrophic failures of head-disk interface. Bearing analysis and AFM analysis show that there are signs of wear and plastic deformation on the disks. It is suggested that flying height could be as low as and, sometimes, lower than laser bump height.

Micro/Meso-scale Shapes Machining by Micro EDM Process

  • Kim Young-Tae;Park Sung-Jun;Lee Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.5-11
    • /
    • 2005
  • Among the micro machining techniques, micro EDM is generally used for machining micro holes, pockets, and micro structures on difficult-cut-materials. Micro EDM parameters such as applied voltage, capacitance, peak current, pulse width, duration time are very important to fabricate the tool electrode and produce the micro structures. Developed micro EDM machine is composed of a 3-axis driving system and RC circuit equipped with pulse generator. In this paper, using micro EDM machine, the characteristics of micro EDM process are investigated and it is applied to micro holes, slots, and pockets machining. Through experiments, relations between machined surface and voltages and between MRR and feedrate are investigated. Also the trends of tool wear are investigated in case of hole and slot machining.