• 제목/요약/키워드: Nano-tube

검색결과 275건 처리시간 0.023초

음극 전극 표면적과 메틸렌블루 염색이 스펀지 탄소나노 튜브 전극 미생물 연료전지의 전력수율에 미치는 영향 (Effects of anode surface area and methylene blue dye treatment on the power density of microbial fuel cell with sponge and carbon nano tube electrode)

  • 이채영;박수희;송영채;우정희;유규선;정재우;한선기
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.883-888
    • /
    • 2012
  • Anode electrode is one of the most important factors in microbial fuel cell (MFC). This study was conducted to investigate the effects of mediator as methylene blue (MB) and electrode surface area on the power density of MFC with sponge and carbon nano tube (CNT) electrode (SC). The SC electrode with MB (MC) showed the maximum power density increased from 74.0 $mW/m^2$ to 143.1 $mW/m^2$. The grid shaped sponge and CNT (GSC) electrode showed the maximum power density of 209.2 $mW/m^2$ due to the increase of surface area from 88.0 to 152.0 $cm^2$. The GSC electrode with MB (GMC) revealed the maximum power density of 384.9 $mW/m^2$ which was 5.2 times higher than that obtained from the MFC with SC. Therefore MB and increase of surface area led to enhance the performance of microbial fuel cell such as power density.

카본나노튜브 상대전극을 가지는 염료감응형 태양전지의 광전특성 (Photo-Electric Characterization of Dye-Sensitized Solar Cells with Carbon Nano Tube Counter Electrode)

  • 구보근;이동윤;김현주;이원재;송재성;;서선희;김선재
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.331-334
    • /
    • 2007
  • 탄소나노튜브는 화학적 안정성과 고전도성을 갖는 동시에 높은 비표면적을 지니고 있다. 이와 같은 특정으로 염료감응형태양전지의 상대전극으로 사용 가능이 기대되어 지고 있으나, 아직 성공적인 연구가 발표되고 있지 않다. 많은 연구자들이 CNT 자체만으로 원하는 효과를 얻지 못하고 있기 때문에, CNT 조작(가공)을 통해 CNT 특성을 올리고자 노력하였다. 그러나 본 연구에서, 가공하지 않은 CNT powder를 이용하여 paste를 제조하고 doctro-blade법으로 코팅하여 CNT counter electrode를 제조하여 DSSC의 상대전극으로써의 적용 가능성을 조사 해 보았다. 제조된 CNT counter electrode에 대한 CNT 자체만의 전기화학적 특성을 측정하였다. 그리고 DSSC 에 직접 적용하여 전지의 광전특성을 측정하였다. 그 결과 탄소나노튜브의 고전도성 특성과 넓은 비표면적 특성에 의해 상대전극의 전해질/전극계변에서의 전해질의 산화환원 반응에 대한 촉매 작용을 향상시키고, 상대전극 표변에서의 전자전달 속도를 높여 염료감응형 태양전지의 효율을 높이는 것으로 확인되어졌다.

  • PDF

탄소나노튜브 전극의 전기화학적 특성 (Electrochemical Properties of Carbon Nano-Tube Electrode)

  • 이동윤;구보근;이원재;송재성;김현주
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권4호
    • /
    • pp.139-143
    • /
    • 2005
  • For application of carbon nano-tube (CNT) as a counter electrode materials of dye-sensitized solar cell (DSSC), the electrochemical behavior of CNT electrode was studied, employing cyclic-voltammetry (C-V) and impedance spectroscopy. Fabrication of CNT-paste and formation of CNT-counter electrode for characteristic measurement have been carried out using ball-milling and doctor blade process, respectively. Unit cell for measurements was assembled using Pt electrode, CNT electrode, and iodine-embedded electrolyte. Field emission-scanning electron microscopy (FE-SEM) was used for structural investigation of CNT powder and electrode. Sheet resistance of electrode was measured with 4-point probe method. Electrochemical properties of electrode, C-V and impedance spectrum, were studied, employing potentiogalvanostat (EG&G 273A) and lock in amplifier (EG&G 5210). As a results, the sheet resistance of CNT electrode is almost similar to that of F-doped SnO2 (FTO) coated glass substrate as approximately 10 ohm/sq. From C-V and impedance spectroscopy measurements, it was found that CNT electrode has high reaction rate and low interface reaction resistance between CNT surface and electrolyte. These results provides that CNT electrode were superior to that of conventional Pt electrode. Particularly, the reaction rate in the CNT electrode is about thrice high than Pt electrode. Therefore. CNT electrode is to be good candidate material for counter electrode in DSSC.

형광등 대체용 LED조명과 CNT조명에 대한 전기적.광학적특성의 비교고찰 (The Characteristics Analysis of substitute LED and CNT Lighting for fluorescent lamp)

  • 황명근;임종민;신상욱;노재엽;조미령;이세현;전상규;최석준;이진우
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.205-208
    • /
    • 2008
  • 본 논문에서는 LED(light emitting diode)조명과 CNT(carbon nano-tube)조명에 대한 전기적인 특성과 광학적 특성을 측정하여 비교하고 고찰하였다. 특히 IES format 파일을 사용하여 각각의 조명등기구에 대한 LID(luminous intensity distribution) 분석과 조도 시뮬레이션을 수행하여 최대 및 최소, 그리고 평균조도 등을 분석하였다. 향후 LED 및 CNT 신광원은 면조명으로의 관련 기술기준 및 규격의 작성시 참고자료로 활용될 것으로 판단된다.

  • PDF

$FeS_2$ 양극에 미치는 전도성 첨가제의 영향 (Effect of Conductive Additives on $FeS_2$ Cathode)

  • 최유송;정해원;김기열;조성백
    • 한국군사과학기술학회지
    • /
    • 제15권2호
    • /
    • pp.224-230
    • /
    • 2012
  • Thermal batteries have excellent mechanical robustness, reliability, and long shelf life. Due to these characteristics as well as their unique activation mechanism, thermal batteries are widely adopted as military power sources. Li(Si)/$FeS_2$ thermal batteries, which are used mostly in these days, use LiCl-KCl and LiBr-LiCl-LiF as molten salt electrolyte. However, it is known that Li(Si)/$FeS_2$ thermal batteries have high internal resistance. Especially, $FeS_2$ cathode accounts for the greater part of internal resistance in unit cell. Many efforts have been put into to decrease the internal resistance of thermal batteries, which result in the development of new electrode material and new electrode manufacturing processes. But the applications of these new materials and processes are in some cases very expensive and need complicated additional processes. In this study, internal resistance study was conducted by adding carbon black and carbon nano-tube, which has high electron conductivity, into the $FeS_2$ cathode. As a results, it was found that the decrease of internal resistance of $FeS_2$ cathode by the addition of carbon black and carbon nano-tube.

6배압 정류기를 이용한 고전압 전원장치에 관한 연구 (A Study of the High Voltage Power Supply using a Sixfold Voltage-Multiplying Rectifier)

  • 안태영;길용만
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.19-26
    • /
    • 2015
  • This paper presents design, fabrication, and performance evaluation of a high voltage power supply for Carbon Nano Tube-based planar light sources. The proposed power supply employs an LLC resonant half-bridge converter and a sixfold voltage-multiplying rectifier. Steady-state characteristics of the voltage-multiplying rectifier are analyzed and used to derive the input-to-output voltage conversion ratio of the power supply. The input-to-output frequency response characteristics of the LLC tank circuit are analyzed and utilized in designing a proto-type power supply which produces a 15 KV output using a 400 V input source. The high-voltage transformer is fabricated using a sectional bobbin structure with an epoxy impregnation, in order to provide sufficient insulation for high voltage operations. The performance of the proposed power supply is confirmed with stable and reliable operations at the 15 KV output from no load to nominal load conditions. The proposed power supply is well suited as an electric ballast required stable operations of Carbon Nano Tube-based planar light sources.

S-L-S 성장기구를 이용한 양질의 골드 나노선 합성 (Synthesis of Au Nanowires Using S-L-S Mechanism)

  • 노임준;김성현;신백균;조진우
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.922-925
    • /
    • 2012
  • Single crystalline Au nanowires were successfully synthesized in a tube-type furnace. The Au nanowires were grown by vapor phase synthesis technique using solid-liquid-solid (SLS) mechanism on substrates of corning glass and Si wafer. Prior to Au nanowire synthesis, Au thin film served as both catalyst and source for Au nanowire was prepared by sputtering process. Average length of the grown Au nanowires was approximately 1 ${\mu}m$ on both the corning glass and Si wafer substrates, while the diameter and the density of which were dependent on the thickness of the Au thin film. To induce a super-saturated states for the Au particle catalyst and Au molecules during the Au nanowire synthesis, thickness of the Au catalyst thin film was fixed to 10 nm or 20 nm. Additionally, synthesis of the Au nanowires was carried out without introducing carrier gas in the tube furnace, and synthesis temperature was varied to investigate the temperature effect on the resulting Au nanowire characteristics.

Analytical solution for buckling analysis of micro sandwich hollow circular plate

  • Mousavi, Mohammad;Mohammadimehr, Mehdi;Rostami, Rasoul
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.185-192
    • /
    • 2019
  • In this paper, the buckling of micro sandwich hollow circular plate is investigated with the consideration of the porous core and piezoelectric layer reinforced by functionally graded (FG)carbon nano-tube. For modeling the displacement field of sandwich hollow circular plate, the high-order shear deformation theory (HSDT) of plate and modified couple stress theory (MCST) are used. The governing differential equations of the system can be derived using the principle of minimum potential energy and Maxwell's equation that for solving these equations, the Ritz method is employed. The results of this research indicate the influence of various parameters such as porous coefficients, small length scale parameter, distribution of carbon nano-tube in piezoelectric layers and temperature on critical buckling load. The purpose of this research is to show the effect of physical parameters on the critical buckling load of micro sandwich plate and then optimize these parameters to design structures with the best efficiency. The results of this research can be used for optimization of micro-structures and manufacturing different structure in aircraft and aerospace.

Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method

  • Gao, Yang;Xiao, Wan-Shen;Zhu, Haiping
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.205-219
    • /
    • 2019
  • This paper analyzes nonlinear free vibration of the circular nano-tubes made of functionally graded materials in the framework of nonlocal strain gradient theory in conjunction with a refined higher order shear deformation beam model. The effective material properties of the tube related to the change of temperature are assumed to vary along the radius of tube based on the power law. The refined beam model is introduced which not only contains transverse shear deformation but also satisfies the stress boundary conditions where shear stress cancels each other out on the inner and outer surfaces. Moreover, it can degenerate the Euler beam model, the Timoshenko beam model and the Reddy beam model. By incorporating this model with Hamilton's principle, the nonlinear vibration equations are established. The equations, including a material length scale parameter as well as a nonlocal parameter, can describe the size-dependent in linear and nonlinear vibration of FGM nanotubes. Analytical solution is obtained by using a two-steps perturbation method. Several comparisons are performed to validate the present analysis. Eventually, the effects of various physical parameters on nonlinear and linear natural frequencies of FGM nanotubes are analyzed, such as inner radius, temperature, nonlocal parameter, strain gradient parameter, scale parameter ratio, slenderness ratio, volume indexes, different beam models.

CFRP CNT 패널을 적용한 동물용 X-ray 디텍터 디자인에 관한 연구 (A study on design for animal X-ray detector using CFRP CNT panel)

  • 이석현;김현성;강승민
    • 한국결정성장학회지
    • /
    • 제30권6호
    • /
    • pp.264-270
    • /
    • 2020
  • 사용자 중심의 서비스디자인 방법론을 통한 디자인개발을 진행하고 시제품 제작 시 소재 선정 기준에 대해 조사분석하여 선정된 소재인 CFRP(Carbon Fiber Reinforced Plastics) CNT(Carbon Nano Tube)를 동물용 X-ray 디텍터 패널부분에 적용하여 제품디자인 및 시제품 개발을 진행하고 CFRP CNT 패널을 적용하여 완성된 시제품을 Drop 테스트, 전면 외압 강도 시험, 방진/방수 성능 시험을 진행하여 야외환경에서 사용하는 휴대가능한 동물용 X-ray 디텍터로 활용이 가능한 제품임을 확인하였다.