• 제목/요약/키워드: Nano-thickness

검색결과 842건 처리시간 0.031초

Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT

  • Jamali, M.;Shojaee, T.;Mohammadi, B.;Kolahchi, R.
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.405-417
    • /
    • 2019
  • This research is devoted to study post-buckling analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) micro plate with cut out subjected to magnetic field and resting on elastic medium. The basic formulation of plate is based on first order shear deformation theory (FSDT) and the material properties of FG-CNTRCs are presumed to be changed through the thickness direction, and are assumed based on rule of mixture; moreover, nonlocal Eringen's theory is applied to consider the size-dependent effect. It is considered that the system is embedded in elastic medium and subjected to longitudinal magnetic field. Energy approach, domain decomposition and Rayleigh-Ritz methods in conjunction with Newton-Raphson iterative technique are employed to trace the post-buckling paths of FG-CNTRC micro cut out plate. The influence of some important parameters such as small scale effect, cut out dimension, different types of FG distributions of CNTs, volume fraction of CNTs, aspect ratio of plate, magnitude of magnetic field, elastic medium and biaxial load on the post-buckling behavior of system are calculated. With respect to results, it is concluded that the aspect ratio and length of square cut out have negative effect on post-buckling response of micro composite plate. Furthermore, existence of CNTs in system causes improvement in the post-buckling behavior of plate and different distributions of CNTs in plate have diverse response. Meanwhile, nonlocal parameter and biaxial compression load on the plate has negative effect on post-buckling response. In addition, imposing magnetic field increases the post-buckling load of the microstructure.

3차원 포아송방정식을 이용한 FinFET의 문턱전압특성분석 (Analysis of Threshold Voltage Characteristics for FinFET Using Three Dimension Poisson's Equation)

  • 한지형;정학기;이재형;정동수;이종인;권오신
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.928-930
    • /
    • 2009
  • 본 연구에서는 3차원 포아송방정식을 이용하여 FinFET의 문턱전압특성을 분석하였다. FinFET는 차세대 나노소자로서 단채널효과를 감소시킬 수 있다는 장점 때문에 많은 연구가 진행중에 있다. 이에 FinFET에서 단채널효과로서 잘 알여진 문턱전압이하 스윙 및 문턱전압 등을 3차원 포아송방정식의 분석학적 모델로 분석하고자 한다. 나노소자인 FinFET의 구조적 특성을 고찰하기 위하여 채널의 두께, 길이, 폭 등의 크기요소에 따라 분석하였다. 본 논문에서 사용한 분석학적 3차원 포아송방정식의 포텐셜모델 및 전송모델은 여러 논문에서 3차원 수치해석학적 값과 비교하여 그 타당성이 입증되었으므로 이 모델을 이용하여 FinFET의 문턱전압 특성 및 문턱전압이하 특성을 분석하였다.

  • PDF

ATR FT-IR과 pyro-GC/MS를 이용한 다층박막필름의 분석 (Analysis of Multi-layered Thin Film Using ATR FT-IR and pyro-GC/MS)

  • 박성일;이정현;이명천
    • 접착 및 계면
    • /
    • 제20권3호
    • /
    • pp.102-109
    • /
    • 2019
  • PET기재 필름 위에 코팅된 다층박막 필름의 층별성분을 ATR FT-IR과 Pyro GC/MS(Gas Chromatography/Mass Spectroscopy)를 이용하여 분석을 시도하였다. 필름의 단면은 액체질소에 담근 후 파괴시켜 얻었으며 광학 현미경을 이용하여 관찰하였다. 이 결과 코팅층의 총 두께는 $70{\mu}m$였으며 3개의 층으로 관찰되었다. 각 층의 두께는 너무 얇기 때문에 표면층을 제외하고는 직접분석이 어려워 적절한 용매로서 각 층을 드러나게 한 후 ATR FT-IR과 pyro-GC/MS를 이용하여 분석을 시도하였다. 이 결과 3개 층은 공통적으로 우레탄-아크릴레이트 공중합체로 밝혀졌다. 또한 무기 혹은 금속성분의 첨가여부는 XPS와 SEM-EDAX를 이용하여 분석하였으며 도장층 (1)에는 나노크기의 실리카 입자가 도장층 (2)에서는 알루미늄 박편이 존재함을 알게 되었다.

원적외선에 의한 EPDM의 가교 특성 연구 (A Study on Vulcanization of EPDM by Far-infrared)

  • 배종우;김정수;이진혁;정우선;박희창;강동필
    • Elastomers and Composites
    • /
    • 제43권1호
    • /
    • pp.1-7
    • /
    • 2008
  • DSC 및 컴파운드 온도 측정을 통해 원적외선에 의한 EPDM의 가교 반응을 연구하였으며, 특히 동일 조건에서의 열풍에 의한 가교 시험을 통해 원적외선 가교시의 효율성을 평가하였다. 원적외선 및 열풍에 의한 EPDM 컴파운드의 가교도를 분석한 결과, 동일 조건에서 원적외선가교 시료의 가교도가 열풍가교에 비해 높게 나타남을 확인할 수 있었으며, 특히 3 mm 두께 시편의 경우 약 2배가량 높은 가교도를 나타내었다. EPDM 컴파운드의 열전도도의 증가는 원적외선에 의한 가교도를 크게 증가시켰으나, 열풍에 의한 가교도의 변화에는 거의 영향을 주지 못하였다.

Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.281-301
    • /
    • 2017
  • In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of magneto-electro-elastic functionally graded (MEE-FG) beams by considering porosity distribution and various boundary conditions via a four-variable shear deformation refined beam theory for the first time. Magneto-electroelastic properties of porous FG beam are supposed to vary through the thickness direction and are modeled via modified power-law rule which is formulated using the concept of even and uneven porosity distributions. Porosities possibly occurring inside functionally graded materials (FGMs) during fabrication because of technical problem that lead to creation micro-voids in FG materials. So, it is necessary to consider the effect of porosities on the vibration behavior of MEE-FG beam in the present study. The governing differential equations and related boundary conditions of porous MEE-FG beam subjected to physical field are derived by Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factor. An analytical solution procedure is used to achieve the natural frequencies of porous-FG beam supposed to magneto-electrical field which satisfies various boundary conditions. A parametric study is led to carry out the effects of material graduation exponent, porosity parameter, external magnetic potential, external electric voltage, slenderness ratio and various boundary conditions on dimensionless frequencies of porous MEE-FG beam. It is concluded that these parameters play noticeable roles on the vibration behavior of MEE-FG beam with porosities. Presented numerical results can be applied as benchmarks for future design of MEE-FG structures with porosity phases.

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

SM45C재의 PVD코팅과 필름에 의한 트라이볼러지 특성 (Variations in Tribological Characteristics of SM45C by PVD Coating and Thin Films)

  • 심현보;서창민;김종형;서민수
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.502-510
    • /
    • 2018
  • In order to accumulate data to lower the friction coefficient of a press mold, tribological tests were performed before and after coating SM45C with a PVC/PO film and plasma coating (CrN, concept). The ultrasonic nanocrystal surface modification (UNSM)-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those of untreated materials. A comparison of the weight change before and after the tribological test with the CrN and the concept coating material and that of the untreated material showed that the wear loss of the concept coating material and P-UNSM treated material (that is, the UNSM treated material treated with the concept coating) showed a tendency to decrease by approximately 55-75%. Concept 100N had a lower friction coefficient of about 0.6, and P-UNSM-30-100N showed almost the same curve as concept 100N and had a low coefficient of friction of about 0.6. The concept multilayer coating had a thickness of $5.32{\mu}m$. In the beginning, the coefficient of friction decreased because of the plasma coating, but it started to increase from about 250-300 s. After about 350 s, the coefficient of friction tended to approach the friction coefficient of the SM45C base metal. The SGV-280F film-attached test specimen was slightly pushed back and forth, but the SM45C base material was not exposed due to abrasion. The friction coefficient was 0.22, which was the lowest, and the tribological property was the best in this study.

Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis

  • Ban, Hee-Jung;Kim, Min Young;Kim, Dahye;Lim, Jinsub;Kim, Tae Won;Jeong, Chaehwan;Kim, Yoong-Ahm;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.22-28
    • /
    • 2019
  • To maximize the oxygen evolution reaction (OER) in the electrolysis of water, nano-grade $IrO_2$ powder with a low specific surface was prepared as a catalyst for a solid polymer electrolyte (SPE) system, and a membrane electrode assembly (MEA) was prepared with a catalyst loading as low as $2mg\;cm^{-2}$ or less. The $IrO_2$ catalyst was composed of heterogeneous particles with particle sizes ranging from 20 to 70 nm, having a specific surface area of $3.8m^2g^{-1}$. The anode catalyst layer of about $5{\mu}m$ thickness was coated on the membrane (Nafion 117) for the MEA by the decal method. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) confirmed strong adhesion at the interface between the membrane and the catalyst electrode. Although the loading of the $IrO_2$ catalyst was as low as $1.1-1.7mg\;cm^{-2}$, the SPE cell delivered a voltage of 1.88-1.93 V at a current density of $1A\;cm^{-2}$ and operating temperature of $80^{\circ}C$. That is, it was observed that the over-potential of the cell for the oxygen evolution reaction (OER) decreased with increasing $IrO_2$ catalyst loading. The electrochemical stability of the MEA was investigated in the electrolysis of water at a current density of $1A\;cm^{-2}$ for a short time. A voltage of ~2.0 V was maintained without any remarkable deterioration of the MEA characteristics.

단결정 실리콘 웨이퍼의 내마모성 및 내식성 향상을 관한 연구 (Enhancement of Wear and Corrosion Resistances of Monocrystalline Silicon Wafer)

  • 우르마노프 바흐티요르;노준석;편영식;아마노프 아웨즈한
    • Tribology and Lubricants
    • /
    • 제35권3호
    • /
    • pp.176-182
    • /
    • 2019
  • The primary objective of this study is to treat a monocrystalline silicon (Si) wafer having a thickness of $279{\mu}m$ by employing the ultrasonic nanocrystal surface modification (UNSM) technology for improving the efficiency and service life of nano-electromechanical systems (NEMSs) and micro-electromechanical systems (MEMSs) by enhancing of wear and corrosion resistances. The wear and corrosion resistances of the Si wafer were systematically investigated before and after UNSM treatment, wherein abrasive, oxidative and spalling wear mechanisms were applied to the as-received and subsequently UNSM-treated Si wafer. Compared to the asreceived state, the wear and corrosion resistances of the UNSM-treated Si wafer are found to be enhanced by about 23% and 14%, respectively. The enhancement in wear and corrosion resistances after UNSM treatment may be attributed to grain size refinement (confirmed by Raman spectroscopy) and modified surface integrity. Furthermore, it is observed that the Raman intensity reduced significantly after UNSM treatment, whereas neither the Raman shift nor new phases were found on the surface of the UNSM-treated Si wafer. In addition, the friction coefficient values of the as-received and UNSM-treated Si wafers are found to be about 0.54 and 0.39, respectively. Hence, UNSM technology can be effectively incorporated as an alternative mechanical surface treatment for NEMSs and MEMSs comprising Si wafers.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제24권2호
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.