• Title/Summary/Keyword: Nano-thickness

Search Result 842, Processing Time 0.024 seconds

Relation between the Concentration of Hexagonal Boron Nitride Nano-Sheets Dispersed in Pure Water and Their Width and Height (초순수 용매 내 육방정 질화붕소 나노시트의 농도와 크기의 관계)

  • Cho, Dae-Hyun;Park, Miyoung;Ha, Seonghun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.343-349
    • /
    • 2019
  • According to a report in 2011, hexagonal boron nitride demonstrated good solubility in pure water, even without surfactants or organic functionalization. Hexagonal boron nitride nanosheets are an effective lubricant additive, and their solubility in pure water has motivated lubrication engineers to utilize aqueous solutions containing these nanosheets as water-based lubricants. In this study, we measure the width and height of the hexagonal boron nitride nanosheets dispersed in pure water by using the Zetasizer and atomic force microscopy. Without surfactants or functionalization, aqueous solutions containing 0.10, 0.07, 0.05, and 0.01 wt% of hexagonal boron nitride nanosheets are synthesized via sonication-assisted hydrolysis. The Zetasizer provides only a one-dimensional size of approximately 410 nm, regardless of the concentration of the solution. Thus, it does not allow the estimation of the shape of the nanosheet. To acquire the three-dimensional size of the nanosheets, atomic force microscopy is employed. The aqueous solutions containing 0.10, 0.07, 0.05, and 0.01 wt% of the hexagonal boron nitride nanosheets show average values of 740, 450, 700, and 610 nm in width, and 37, 26, 33, and 32 nm in thickness, respectively. No significant trend is observed between the concentration of the solution and size of the nanosheets. Therefore, when preparing a water-based lubricant, it may be appropriate to adjust conditions such as ultrasonication time rather than the concentration.

Atomic Layer Deposition: Overview and Applications (원자층증착 기술: 개요 및 응용분야)

  • Shin, Seokyoon;Ham, Giyul;Jeon, Heeyoung;Park, Jingyu;Jang, Woochool;Jeon, Hyeongtag
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.405-422
    • /
    • 2013
  • Atomic layer deposition(ALD) is a promising deposition method and has been studied and used in many different areas, such as displays, semiconductors, batteries, and solar cells. This method, which is based on a self-limiting growth mechanism, facilitates precise control of film thickness at an atomic level and enables deposition on large and three dimensionally complex surfaces. For instance, ALD technology is very useful for 3D and high aspect ratio structures such as dynamic random access memory(DRAM) and other non-volatile memories(NVMs). In addition, a variety of materials can be deposited using ALD, oxides, nitrides, sulfides, metals, and so on. In conventional ALD, the source and reactant are pulsed into the reaction chamber alternately, one at a time, separated by purging or evacuation periods. Thermal ALD and metal organic ALD are also used, but these have their own advantages and disadvantages. Furthermore, plasma-enhanced ALD has come into the spotlight because it has more freedom in processing conditions; it uses highly reactive radicals and ions and for a wider range of material properties than the conventional thermal ALD, which uses $H_2O$ and $O_3$ as an oxygen reactant. However, the throughput is still a challenge for a current time divided ALD system. Therefore, a new concept of ALD, fast ALD or spatial ALD, which separate half-reactions spatially, has been extensively under development. In this paper, we reviewed these various kinds of ALD equipment, possible materials using ALD, and recent ALD research applications mainly focused on materials required in microelectronics.

Thermal Properties of Al-Ni-Y Alloy Amorphous Ribbons and High Temperature Deformation Behavior of Al-Ni-Y Alloy Extrudates Fabricated with Amorphous Ribbons (Al-Ni-Y 합금 비정질 리본의 열적 특성 및 리본 압출재의 고온변형 특성)

  • Ko, Byung-Chul;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.333-339
    • /
    • 1998
  • Hot torsion tests were conducted to investigate the high temperature deformation behavior of $Al_{85}Ni_{10}Y_5$ alloy extrudates fabricated with amorphous ribbons. The powder metallurgy routes, hot pressing and hot extrusion were used to fabricate the extrudates. Thermal properties of amorphous ribbons with different thickness as a function of aging temperature were studied by thin film x-ray dif-fraction (XRD) and differential scanning calorimetry(DSC). The Al phase crystallite firstly formed in the amorphous ribbons and its crystallization temperature($T_x$)Was ~210${\circ}C$ During the processings of consolidation and extrusion, nano-grained structure(~100 nm) was formed in the Al85Ni10Y5 alloy extrudates. The as-extrudated Al85Ni10Y5 alloy and the $Al_{85}Ni_{10}Y_5$ alloy annealed at 250${\circ}C$ for 1 hour showed a flow curve of DRV(dynamic recovery) during hot deformation at 400-550${\circ}C$. On the other hand, the $Al_{85}Ni_{10}Y_5$ alloy annealed at 400${\circ}C$ for 1 hour showed a flow curve of DRX(dynamic recrys-tallization) during hot deformation at 450-500${\circ}C$. Also the flow stress and flow strain of the $Al_{85}Ni_{10}Y_5$ alloy extrudate annealed at 400${\circ}C$ were higher than those at 250${\circ}C$.

  • PDF

Stress Induced Leakage Currents in the Silicon Oxide Insulator with the Nano Structures (나노 구조에서 실리콘 산화 절연막의 스트레스 유기 누설전류)

  • 강창수
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.335-340
    • /
    • 2002
  • In this paper, the stress induced leakage currents of thin silicon oxides is investigated in the ULSI implementation with nano structure transistors. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The transient current was caused by the tunnel charging and discharging of the stress generated traps nearby two interfaces. The stress induced leakage current will affect data retention in electrically erasable programmable read only memories. The oxide current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between 113.4${\AA}$ and 814${\AA}$, which have the gate area $10^3cm^2$. The stress induced leakage currents will affect data retention and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses.

Fabrication and Microstructure of Hydroxyapatite Coating Layer by Plasma Spraying (플라즈마 용사법에 의한 Hydroxyapatite코팅층의 제조와 미세구조)

  • 이치우;오익현;이형근;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.259-265
    • /
    • 2004
  • The microstructure of nano-sized hydroxyapatite (HAp) powders coating layer on ZrO$_2$ substrate was investigated, which was formed by plasma spray process. The nano-sized HAp powders were successfully synthesized by precipitation of Ca(NO$_3$)$_2$$.$4H$_2$O and (NH$_4$)$_2$HPO$_4$ solution. The HAp coating layer with thickness of 150∼250 $\mu\textrm{m}$ was free from the cracks at interfaces between the coating and ZrO$_2$ substrate. In the plasma sprayed HAp coating layer, the undesirable phases were not found, while in the HAp coating layer heat-treated at 800$^{\circ}C$, TTCP, and ${\beta}$-TCP phase were detected as well as HAp phase. However, at 900$^{\circ}C$, they were completely disappeared. At 1100$^{\circ}C$, XRD analysis revealed that the coating layer was composed of the highly crystallized HAp.

Additional Impurity Roles of Nitrogen and Carbon for Ternary compound W-C-N Diffusion Barrier for Cu interconnect (Cu 금속 배선에 적용되는 질소와 탄소를 첨가한 W-C-N 확산방지막의 질소불순물 거동 연구)

  • Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.348-352
    • /
    • 2007
  • In submicron processes, the feature size of ULSI devices is critical, and it is necessary both to reduce the RC time delay for device speed performance and to enable higher current densities without electromigration. In case of contacts between semiconductor and metal in semiconductor devices, it may be very unstable during the thermal annealing process. To prevent these problems, we deposited tungsten carbon nitride (W-C-N) ternary compound thin film as a diffusion barrier for preventing the interdiffusion between metal and semiconductor. The thickness of W-C-N thin film is $1,000{\AA}$ and the process pressure is 7mTorr during the deposition of thin film. In this work we studied the interface effects W-C-N diffusion barrier using the XRD and 4-point probe.

Interaction between RuO2 and Carbon Nanotubes - Photoemission and X-ray Absorption Study

  • Lee, Seung-Youb;Kim, Yoo-Seok;Jeon, Chel-Ho;Ihm, Kyu-Wook;Kang, Tai-Hee;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.567-567
    • /
    • 2012
  • Since the carbon nanotubes (CNTs) have extraordinary material properties, many researchers are trying to make a practical application in various fields [1]. In particular, the high surface area of CNTs was fascinated for nano-template on the catalytic system. $RuO_2$ coated CNTs are useful functional nano-composites in many applications, including super capacitors, fuel cells, biosensors, and field emitters. However, the research of interaction between CNTs and $RuO_2$ was not satisfied with various fields [2]. In this study, we will introduce the change of chemical and electrical state of $RuO_2$/CNTs at different temperatures by synchrotron radiation photoemission spectroscopy (SRPES). The t-MWCNTs used in this experiment were grown on the Ni/TiN/Si substrates by chemical vapor deposition. $RuO_2$ of 4-20 nm in thickness was deposited on the t-MWNTs by sputter. The SRPES measurements were carried out at the 4B1 beamline of the Pohang Accelerator Laboratory in Korea. The result of XPS measurement indicates that the deposited $RuO_2$ on the CNTs was reduced into pure Ru at above $300^{\circ}C$. And we confirmed that the effective work function of $RuO_2$/CNTs was decreased with increasing temperature.

  • PDF

Superhydrophobic nanostructured non-woven fabric using plasma modification

  • Shin, Bong-Su;Lee, Kwang-Reoul;Kim, Ho-Young;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.320-320
    • /
    • 2011
  • We describe fabrication of superhydrophobic surface on non-woven fabric (NWF) having nano-hairy structures and a hydrophobic surface coating. Oxygen plasma was irradiated on NWF for nano-texuring and a precursor of HMDSO (Hexamethydisiloxane) was introduced as a surface chemical modification for obtaining superhydrophobicity using 13.56 MHz radio frequency-Plasma Enhanced Chemical Vapor Deposition (rf-PECVD). O2 plasma treatment time was varied from 1 min to 60 min at a bias voltage of 400V, which fabricated pillar-like structures with diameter of 30 nm and height of 150 nm on NWF. Subsequently, hydrophobic coating using hexamethyldisiloxane vapor was deposited with 10 nm thickness on NWF substrate at a bias voltage of 400 V. We evaluate superhydrophobicity of the modified NWF with sessile drop using goniometer and high speed camera, in which aspect ratio of nanohairy structures, contact angle and contact angle hysteresis of the surfaces were measured. With the increase of aspect ratio, the wetting angle increased from $103^{\circ}$ to $163^{\circ}$, and the contact angle hysteresis decreased dramatically below $5^{\circ}$. In addition, we had conducted experiment for nucleation and condensation of water via E-SEM. During increasing vapor pressure inside E-SEM from 3.7 Torr to over 6 Torr which is beyond saturation point at $2^{\circ}C$, we observed condensation of water droplet on the superhydropobic NWF. While the condensation of water on oxygen plasma treated NWF (superhydrophilic) occurred easily and rapidly, superhydrophobic NWF which was fabricated by oxygen and HMDSO was hardly wet even under supersaturation condition. From the result of wetting experiment and water condensation via E-SEM, it is confirmed that superhydrophobic NWF shows the grate water repellent abilities.

  • PDF

Indium Tin Oxide (ITO) Nano Thin Films Deposited by a Modulated Pulse Sputtering at Room Temperature (모듈레이티드 펄스 스퍼터링으로 상온 증착한 Indium-Tin-Oxide (ITO) 나노 박막)

  • You, Younggoon;Jeong, Jinyong;Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.109-115
    • /
    • 2014
  • High power impulse magnetron sputtering (HIPIMS), also known as the technology is called peak power density in a short period, you can get high, so high ionization sputtering rate can make. Higher ionization of sputtered species to a variety of coating materials conventional in the field of improving the characteristics and self-assisted ion thin film deposition process, which contributes to a superior being. HIPIMS at the same power, but the deposition speed is slow in comparison with DC disadvantages. Since recently as a replacement for HIPIMS modulated pulse power (MPP) has been developed. This ionization rate of the sputtered species can increase the deposition rate is lowered and at the same time to overcome the problems to be reported. The differences between the MPP and the HIPIMS is a simple single pulse with a HIPIMS whereas, MPP is 3 ms in pulse length is adjustable, with the full set of multi-pulses within the pulse period and the pulse is applied can be micro advantages. In this experiment, $In_2O_3$ : $SnO_2$ composition ratio of 9 : 1 wt% target was used, Ar : $O_2$ flow rate ratio is 4.8 to 13.0% of the rate of deposition was carried out at room temperature. Ar 40 sccm and the flow rate of $O_2$ and then fixed 2 ~ 6 sccm was compared against that. The thickness of the thin film deposition is fixed at 60 nm, when the partial pressure of oxygen at 9.1%, the specific resistance value of $4.565{\times}10^{-4}{\Omega}cm$, transmittance 86.6%, mobility $32.29cm^2/Vs$ to obtain the value.

Fabrication and Evaluation of 5 vol%CNT/Al Composite Material by a Powder in Sheath Rolling Method (분말시스압연법에 의한 5 vol%CNT/Al 복합재료의 제조 및 평가)

  • Hong, Dongmin;Kim, Woo-Jin;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.607-612
    • /
    • 2013
  • A powder in sheath rolling method was applied to the fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A 6061 aluminum alloy tube with outer diameter of 31 mm and wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powder and CNTs with a volume content of 5% was filled in the tube by tap filling and then processed to an 85% reduction using multi-pass rolling after heating for 0.5 h at $400^{\circ}C$. The specimen was then further processed at $400^{\circ}C$ by multi-pass hot rolling. The specimen was then annealed for 1 h at various temperatures that ranged from 100 to $500^{\circ}C$. The relative density of the 5vol%CNT/Al composite fabricated using powder in sheath rolling increased with increasing of the rolling reduction, becoming about 97% after hot rolling under 96 % total reduction. The relative density of the composite hardly changed regardless of the increasing of the annealing temperature. The average hardness also had only slight dependence on the annealing temperature. However, the tensile strength of the composite containing the 6061 aluminum sheath decreased and the fracture elongation increased with increasing of the annealing temperature. It is concluded that the powder in sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.