• Title/Summary/Keyword: Nano-structures

Search Result 933, Processing Time 0.027 seconds

Fabrication of a Micro/Nano-scaled Super-water-repellent Surface and Its Impact Behaviors of a Shooting Water Droplet (마이크로/나노 구조를 갖는 초발수성 표면의 제작 및 분사 액적의 충돌 특성 연구)

  • Kim, Hyung-Mo;Lee, Sang-Min;Lee, Chan;Kim, Moo-Hwan;Kim, Joon-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.1020-1025
    • /
    • 2012
  • In this study, we fabricated the superhydrophobic and super-water-repellent surface with the micro/nano scale structures using simple conventional silicon wet-etching technique and the black silicon method by deep reactive ion etching. These fabrication methods are simple but very effective. Also we reported the droplet impact experimental results on the micro/nano-scaled surface. There are two representative impact behaviors as "rebound" and "fragmentation". We found the transition Weber number between "rebound" and "fragmentation" statements, experimentally. Additionally, we concerned about the dimensionless spreading diameters for our super-water-repellent surface. The novel characterization method was introduced for analysis including the "fragmentation" region. As a result, our super-water-repellent surface with the micro/nano-scaled structures shows the different impact behaviors compared with a reference smooth surface, by some meaningful experiments.

Surface Plasmon Resonance Based on ZnO Nano-grating Structure (산화아연을 이용한 나노격자 구조의 표면 플라즈몬 공명)

  • Kim, Doo-Gun;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Hwe-Jong;Oh, Geum-Yoon;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.922-926
    • /
    • 2010
  • We have investigated the grating coupled surface plasmon resonance (GC-SPR) sensors using ZnO nano-grating structures to enhance the sensitivity of an SPR sensor. The GC-SPR sensors were analyzed using the finite-difference time-domain method. The optimum resonance angles of 49 degrees are obtained in the 150 nm wide grating structure with a period of 300 nm for the ZnO thickness of 30 nm. Then, the ZnO nano-grating patterns were fabricated by using laser interference lithography. The measured resonance angle of nano-grating patterns was around 49 degrees. Here, an enhanced evanescent field is obtained due to the surface plasmon on the edge of the bandgap when the ZnO grating structures are used to excite the surface palsmon.

The Performance Evaluation of Mortar Using Calcium Nitrite and CO2 Nano-Bubble Water (아질산칼슘과 탄산나노버블수를 사용한 모르타르의 성능 평가)

  • Kim, Ho-jin;Kim, Jin-Sung;Choi, Hyeong-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.145-146
    • /
    • 2020
  • This study investigated the performance evaluation of polymer cement mortar for repairing concrete structures using calcium nitrite(Ca(NO2)2) and CO2 nano-bubble mixing water to develop section-restoration methods for the repair and reinforcement of cracks. The evaluation items were strength and microstructure analysis at 28 days of age according to the change in the amount of calcium nitrite and the use of CO2 nano-bubble water. As a result of the experiment, it was confirmed that the performance of polymer cement mortar for repairing concrete structures was improved by the generation of nitrite-based hydration products when calcium nitrite and CO2 nano-bubble water were used.

  • PDF

Molecular Orientation of Intercalants Stabilized in the Interlayer Space of Layered Ceramics: 1-D Electron Density Simulation

  • Yang, Jae-Hun;Pei, Yi-Rong;Piao, Huiyan;Vinu, Ajayan;Choy, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.417-428
    • /
    • 2016
  • In this review, an attempt is made to calculate one-dimensional (1-D) electron density profiles from experimentally determined (00l) XRD intensities and possible structural models as well in an effort to understand the collective intracrystalline structures of intercalant molecules of two-dimensional (2-D) nanohybrids with heterostructures. 2-D ceramics, including layered metal oxides and clays, have received much attention due to their potential applicability as catalysts, electrodes, stabilizing agents, and drug delivery systems. 2-D nanohybrids based on such layered ceramics with various heterostructures have been realized through intercalation reactions. In general, the physico-chemical properties of such 2-D nanohybrids are strongly correlated with their heterostructures, but it is not easy to solve the crystal structures due to their low crystallinity and high anisotropic nature. However, the powder X-ray diffraction (XRD) analysis method is thought to be the most powerful means of understanding the interlayer structures of intercalant molecules. If a proper number of well-developed (00l) XRD peaks are available for such 2-D nanohybrids, the 1-D electron density along the crystallographic c-axis can be calculated via a Fourier transform analysis to obtain structural information about the orientations and arrangements of guest species in the interlayer space.

Fabrication of ZnO Nanostructures with Various Growth Conditions by Vapor Phase Transport

  • Kim, So-A-Ram;Nam, Gi-Woong;Kim, Min-Su;Yim, Kwang-Gug;Kim, Do-Yeob; Leem, Jae-Youn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.250-250
    • /
    • 2011
  • Zinc oxide (ZnO) structures have great potential in many applications. Currently, the most commonly used method to grow ZnO nanostructres are the vapor transport method (VPT). The morphology of the ZnO structures largely related to the growth conditions, including growth temperature, distance between the substrate and source, and gas ambient. Previously ZnO nanosturecutres with high crystallinity were obtained at the growth temperature of 800$^{\circ}C$, in the argon and oxygen gas ambient. In this study, we report the properties of the ZnO nanostructures, which were synthesized on Au-catalyzed Si substrate by VPT, using a mixture of ZnO and graphite powders as source material under the different condition, including gas ratio of argon/oxygen and distance between substrate and source at the growth temperature of 800$^{\circ}C$. The structural and optical properties of the ZnO nanostructures were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL).

  • PDF

Fabrication of semi-polar nano- and micro-scale GaN structures on the vertex of hexagonal GaN pyramids by MOVPE (MOVPE에 의한 GaN 피라미드 꼭지점 위의 반극성 나노/마이크로 크기의 GaN 성장)

  • Jo, Dong-Wan;Ok, Jin-Eun;Yun, Wy-Il;Jeon, Hun-Soo;Lee, Gang-Suok;Jung, Se-Gyo;Bae, Seon-Min;Ahn, Hyung-Soo;Yang, Min;Lee, Young-Cheol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.114-118
    • /
    • 2011
  • We report on the growth and characterization of nano and micro scale GaN structures selectively grown on the vertex of hexagonal GaN pyramids. $SiO_2$ near the vertex of hexagonal GaN pyramids was removed by optimized photolithgraphy process and followed by a selective growth of nano and micro scale GaN structures by metal organic vapor phase epitaxy (MOVPE). The pyramidal GaN nano and micro structures which have crystal facets of semi-polar {1-101} facets were formed only on the vertex of GaN pyramids and the size of the selectively grown nano and micro GaN structures was easily controlled by growth time. As a result of TEM measurement, Reduction of threading dislocation density was conformed by transmission electron microscopy (TEM) in the selectively grown nano and micro GaN structures. However, stacking faults were newly developed near the edge of $SiO_2$ film because of the roughness and nonuniformity in thickness of the $SiO_2$ film.

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF