• Title/Summary/Keyword: Nano-spectroscopy

Search Result 686, Processing Time 0.026 seconds

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy

  • Togasaki, Norihiro;Yokoshima, Tokihiko;Oguma, Yasumasa;Osaka, Tetsuya
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.

Tip Enhanced Nano Raman Scattering in Graphene

  • Mun, Seok Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.87.2-87.2
    • /
    • 2016
  • As an era of nano science approaches, the understanding on the shape and optical properties of various materials in a nanoscale range is getting important more seriously than ever. Accordingly the development of high spatial-temporal-spectral resolution measurement tools for characterization of nanomaterials/structures is highly required. Generally, the various properties of sample can be measured independently, e.g. to observe the structural property of sample, we use the scanning electron microscopy or atomic force microscopy, and to observe optical property, we have to use another independent measurement tool such as photoluminescence spectroscopy or Raman spectroscopy. In the case of nano-materials, however, it is very difficult to find out the same position of sample at every different measurement processes, and the condition of sample can be changed by the influence of first measurement. The tip enhanced Raman scattering(TERS), which can simultaneously measure the two or more information of sample with nanoscale spatial resolution, is one of solutions of this problem. In this talk, I will present our recent nano Raman scattering data of graphene that measured by TERS and optimized tip fabrication method for efficient experiment.

  • PDF

Nano-Bio Applications Using Carbon Nanotube-Biomolecule Conjugates (탄소 나노튜브와 생체 분자와의 결합을 통한 나노-바이오 응용)

  • Mwang Eung-Soo;Cao Cheng-Fan;Hong Sang-Hyun;Jung Hye-Jin;Cha Chang-Yong;Choi Jac-Boons;Kim Young-Jin;Baik Seung-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.179-186
    • /
    • 2006
  • Single-walled carbon nanotubes (SWNT) exhibit strong Raman signals as well as fluorescence emissions in the near infrared regions where most biomolecules are transparent. Such signals do not blink or photobleach under prolonged excitation. which is advantageous to optical nano-bio marker applications. In this paper, single walled carbon nanotubes are conjugated with specific types of single-stranded DNA in order to detect oligonucleotides of corresponding complimentary sequences. Dot blotting experiments and comparative Raman spectroscopy observations demonstrated excellent sensitivity and specificity of carbon nanotube-DNA probes. The results show the possibility of using SWNT as generic nano-bio markers for the precise detection of specific kinds of genes.

Room temperature ferromagnetism in diluted magnetic semiconductor $Zn_{l-x}Cr_xTe$

  • Ando, K.;Saito, H.;Zayets, V.;Yamagata, S.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.266-267
    • /
    • 2003
  • The most distinguishing character of diluted magnetic semiconductors (DMSs) is a strong interaction between sp-carriers and localized d-spins (sp-d exchange interaction). Recently many "room-temperature (RT) ferromagnetic DMS" have been reported. However, it should be noted that their sp-d exchange interactions have not been confirmed yet. The lack of a clear evidence of the sp-d exchange interaction causes the controversy on the origin of the observed ferromagnetism. For the detection of the sp-d exchange interaction, magneto-optical spectroscopy such as a magnetic circular dichroism (MCD) measurement is the most powerful tool. By using the MCD spectroscopy, we have shown the sp-d exchange interactions in Zn$_{l-x}$Cr$_{x}$Te. Recently, we have obtained the RT ferromagnetism in a Zn$_{l-x}$Cr$_{x}$Te (x = 0.20) film.0) film.

  • PDF

Room Temperature Ferromagnetism on Co and Fe Doped Multi-wall Carbon Nano-tube

  • Chae, K.H.;Gautam, S.;Yu, B.Y.;Song, J.H.;Augustine, S.;Kang, J.K.;Asokan, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.171-171
    • /
    • 2011
  • Co and Fe doped multi-wall carbon nano-tubes (MWCNTs) synthesized by microwave plasma enhanced chemical vapor deposition (PECVD) technique are investigated with synchrotron radiations at Pohang Light Source (PAL) and European Synchrotron Radiation Facility (ESRF). Near edge x-ray absorption spectroscopy (NEXAFS) measurement at C K, Co $L_{3,2}$ and Fe $L_{3,2}$-edges, and x-ray magnetic circular dichroism (XMCD) at Co and Fe $L_{3,2}$-edges have been carried at 7B1 XAS KIST and 2A MS beamline, respectively, to understand the electronic structure and responsible magnetic interactions at room temperature. X-ray absorption spectroscopy (XAS) at C K-edge shows significant p-bonding and Co and Fe L-edges proves the presence of $Co^{2+}$ and $Fe^{2+}$ in octahedral symmetry. Co and Fe doped MWCNTs show good XMCD spectra at 300K. The effect on the magnetism is also studied through swift heavy ion (SHI) radiations and magnetism is found enhanced and change in the electronic structure in Co-CNTs is investigated.

  • PDF

Structure and optical properties of vapor grown In2O3: Ga nano-/microcrystals

  • Sanchez, Diego Leon;Ramon, Jesus Alberto Ramos;Zaldivar, Manuel Herrera;Pal, Umapada;Rosas, Efrain Rubio
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.81-96
    • /
    • 2015
  • Octahedral shaped single crystalline undoped and Ga-doped indium oxide nano-and microcrystals were fabricated using vapor-solid growth process. Effects of Ga doping on the crystallinity, defect structure, and optical properties of the nano-/microstructures have been studied using scanning electron microscopy, microRaman spectroscopy, transmission electron microscopy and cathodoluminescence spectroscopy. It has been observed that incorporation of Ga does not affect the morphology of $In_2O_3$ structures due to its smaller ionic radius, and similar oxidation state as that of In. However, incorporation of Ga in high concentration (~3.31 atom %) causes lattice compression, reduces optical band gap and defect induced CL emissions of $In_2O_3$ nano-/microcrystals. The single crystalline Ga-doped, $In_2O_3$ nano-/microcrystals with low defect contents are promising for optoelectronic applications.

Analysis of BNNT(Boron Nitride Nano Tube) synthesis by using Ar/N2/H2 60KW RF ICP plasma in the difference of working pressure and H2 flow rate

  • Cho, I Hyun;Yoo, Hee Il;Kim, Ho Seok;Moon, Se Youn;Cho, Hyun Jin;Kim, Myung Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.179-179
    • /
    • 2016
  • A radio-frequency (RF) Inductively Coupled Plasma (ICP) torch system was used for boron-nitride nano-tube (BNNT) synthesis. Because of electrodeless plasma generation, no electrode pollution and effective heating transfer during nano-material synthesis can be realized. For stable plasma generation, argon and nitrogen gases were injected with 60 kW grid power in the difference pressure from 200 Torr to 630 Torr. Varying hydrogen gas flow rate from 0 to 20 slpm, the electrical and optical plasma properties were investigated. Through the spectroscopic analysis of atomic argon line, hydrogen line and nitrogen molecular band, we investigated the plasma electron excitation temperature, gas temperature and electron density. Based on the plasma characterization, we performed the synthesis of BNNT by inserting 0.5~1 um hexagonal-boron nitride (h-BN) powder into the plasma. We analysis the structure characterization of BNNT by SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy), also grasp the ingredient of BNNT by EELS (Electron Energy Loss Spectroscopy) and Raman spectroscopy. We treated bundles of BNNT with the atmospheric pressure plasma, so that we grow the surface morphology in the water attachment of BNNT. We reduce the advancing contact angle to purity bundles of BNNT.

  • PDF

Synthesis and Electrochemical Characterization of Reduced Graphene Oxide-Manganese Oxide Nanocomposites

  • Lee, Yu-Ri;Song, Min-Sun;Lee, Kyung-Min;Kim, In-Young;Hwang, Seong-Ju
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Nanocomposites of reduced graphene oxide and manganese (II,III) oxide can be synthesized by the freeze-drying process of the mixed colloidal suspension of graphene oxide and manganese oxide, and the subsequent heat-treatment. The calcined reduced graphene oxide-manganese (II,III) oxide nanocomposites are X-ray amorphous, suggesting the formation of homogeneous and disordered mixture without any phase separation. The reduction of graphene oxide to reduced graphene oxide upon the heat-treatment is evidenced by Fourier-transformed infrared spectroscopy. Field emission-scanning electronic microscopy and energy dispersive spectrometry clearly demonstrate the formation of porous structure by the house-of-cards type stacking of reduced graphene oxide nanosheets and the homogeneous distribution of manganese ions in the nanocomposites. According to Mn K-edge X-ray absorption spectroscopy, manganese ions in the calcined nanocomposites are stabilized in octahedral symmetry with mixed Mn oxidation state of Mn(II)/Mn(III). The present reduced graphene oxide-manganese oxide nanocomposites show characteristic pseudocapacitance behavior superior to the pristine manganese oxide, suggesting their applicability as electrode material for supercapacitors.

Nano-Wear and Friction of Magnetic Recording Hard Disk by Contact Start/Stop Test

  • Kim, Woo Seok;Hwang, Pyung;Kim, Jang-Kyo
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.12-20
    • /
    • 2000
  • Nano-wear and friction of carbon overcoated laser-textured and mechanically-textured computer hard disk were characterised after contact start/stop (CSS) wear test. Various analytical and mechanical testing techniques were employed to study the changes in topography, roughness, chemical elements, mechanical properties and friction characteristics of the coating arising from the contact start/stop wear test These techniques include: the atomic force microscopy (AFM), the continuous nano-indentation test, the nano-scratch test, the time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and the auger electron spectroscopy (AES). It was shown that the surface roughness of the laser-textured (LT) bump and mechanically textured (MT) Bone was reduced approximately am and 7nm, respectively, after the CSS wear test. The elastic modulus and hardness values increased after the CSS test, indicating straining hardening of the top coating layer, A critical load was also identified fer adhesion failure between the magnetic layer and the Ni-P layer, The TOF-SIMS analysis also revealed some reduction in the intensity of C and $C_2$$F_59$, confirming the wear of lubricant elements on the coating surface.

  • PDF