• Title/Summary/Keyword: Nano-sized Powder

Search Result 257, Processing Time 0.026 seconds

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

Mechanism and Characteristics of Nano-dispersed Powder by Pulsed Discharge Method

  • Kwon, Young-Soon;Ilyin, Alexander P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2003.10a
    • /
    • pp.27-32
    • /
    • 2003
  • The phenomenon of electrical explosion of conductors is considered in the context of the changes in the energy and structural states of the metal at the stages of energy delivery and relaxation of the primary products of EEC. It is shown that these changes are related to the forced interaction of an intense energy flux with matter and to the subsequent spontaneous relaxation processes. The characteristics of nano-sized metal powders are also discussed.

  • PDF

Effect of Reaction Factors on the Fabrication of Nano-Sized Ni-ferrite Powder by Spray Pyrolysis Process (분무열분해공정에 의한 니켈 페라이트 나노 분말 제조에 미치는 반응인자들의 영향)

  • 유재근;서상기;박시현;한정수
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.202-209
    • /
    • 2004
  • In this study, nano-sized powder of Ni-ferrite was fabricated by spray pyrolysis process using the Fe-Ni complex waste acid solution generated during the shadow mask processing. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the inlet speed of solution and the air pressure on the properties of powder were studied. As the reaction temperature increased from 80$0^{\circ}C$ to 110$0^{\circ}C$, the average particle size of the powder increased from 40 nm to 100 nm, the fraction of the Ni-ferrite phase was also on the rise, and the surface area of the powder was greatly reduced. As the inlet speed of solution increased from 2 cc/min. to 10 cc/min., the average particle size of the powder greatly increased, and the fraction of the Ni-ferrite phase was on the rise. As the inlet speed of solution increased to 100 cc/min., the average particle size of the powder decreased slightly and the distribution of the particle size appeared more irregular. Along with the increase of the inlet speed of solution more than 10 cc/min., the fraction of the Ni-ferrite phase was decreased. As the air pressure increased up to 1 $kg/cm^2, the average particle size of the powder and the fraction of the Ni-ferrite phase was almost constant. In case of 3 $kg/cm^2 air pressure, the average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased.

Effect of Reaction Factors on the Fabrication of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process (분무열분해공정에 의한 인듐 산화물 나노 분말 제조에 미치는 반응인자들의 영향)

  • Yu Jae-Keun
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.493-502
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is fab-ricated from the indium chloride solution by the spray pyrolysis process. The effects of the reaction temperature, the concentration of raw material solution and the inlet speed of solution on the properties of powder were studied. As the reaction temperature increased from 850 to $1000^{\circ}C$, the average particle size of produced powder increased from 30 to 100 nm, and microstructure became more solid, the particle size distribution was more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the indium concentration of the raw material solution increased from 40 to 350 g/l, the average particle size of the powder gradually increased from 20 to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and spe-cific surface area decreased. As the inlet speed of solution increased from 2 to 5 cc/min., the average particle size of the powder decreased and the particle size distribution became more homogeneous. In case of the inlet speed of 10 cc/min, the average particle size was larger and the particle size distribution was much irregular compared with the inlet speed of 5 cc/min. As the inlet speed of solution was 50 cc/min, the average particle size was smaller and microstructure of the powder was less solid compared with the inlet speed of 10 cc/min. The intensity of a XRD peak and the variation of specific area of the powder had the same tendency with the variation of the average par-ticle size.

Nano-Sized Phosphor by Reverse Emulsion Process and Precision Nozzle Phosphor Patterning

  • Park, Lee-Soon;Yoon, Hae-Sang;Han, Yoon-Soo;Im, Moo-Sik;Kwon, Young-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.536-539
    • /
    • 2004
  • A novel ink-jet printing method was investigated for fine patterning of phosphor layer in PDP using a precision nozzle printing. A reverse emulsion method was developed for the synthesis of nano-sized phosphor powder that could be formulated in the phosphor ink. The composition of the phosphor ink including charge controlling agents, solvent, dispersant and nano-sized phosphor powder was optimized for the fine patterning of phosphor layer for high resolution PDP.

  • PDF

Fabrication of the Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Yu, Jae-Keun;NamGoong, Hyun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.426-432
    • /
    • 2012
  • This study involves using nickel chloride solution as a raw material to produce nano-sized nickel oxide powder with average particle size below 50 nm by the spray pyrolysis reaction. The influence of the inflow speed of raw material solution on the properties of the produced powder is examined. When the inflow speed of the raw material solution is at 2 ml/min., the average particle size of the powder is 15~25 nm and the particle size distribution is relatively uniform. When the inflow speed of the solution increases to 10 ml/min., the average particle size of the powder increases to about 25 nm and the particle size distribution becomes much more uneven. When the inflow speed of the solution increases to 20 ml/min., the average particle size of the powder increases in comparison to the case in which the inflow speed of the solution was 10 ml/min. However, the particle size distribution is very uneven, showing various particle size distributions ranging from 10 nm to 70 nm. When the inflow speed of solution increases to 50 ml/min., the average particle size of the powder decreases in comparison to the case in which the inflow speed was 20 ml/min., and the particle size distribution shows more evenness. As the inflow speed of the solution increases from 2 ml/min. to 20 ml/min., the XRD peak intensities gradually increase, while the specific surface area decreases. When the inflow speed of solution increases to 50 ml/min., the XRD peak intensities rather decrease, while the specific surface area increases.