• Title/Summary/Keyword: Nano-sized Ni powder

Search Result 34, Processing Time 0.029 seconds

Characteristics of SOFC Anode of Ni/YSZ Core-shell Manufactured Using sSpherical Ni and Nano YSZ Powders (구형 Ni과 나노 YSZ Powder를 이용하여 제조한 Ni/YSZ Core-shell의 SOFC 연료극 특성)

  • Choi, Byung-Hyun;Koo, Ja-Bin;Seol, Kwang-Hee;Ji, Mi-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.40-46
    • /
    • 2017
  • We reviewed the electrical properties of SOFC anode manufactured using spherical Ni and nano YSZ powder. When core-shell is fabricated by using submicron Ni as core and nano-sized YSZ as shell for SOFC anode, the electrical conductivity of the $0.2{\mu}m$ Ni-YSZ core-shell was 3 times higher than that of $1.0{\mu}m$ NiO or $1.0{\mu}m$ Ni-YSZ. Hydrogen selectivity was similar at $800^{\circ}C$, but hydrogen selectivity and methane conversion rate under $750^{\circ}C$ was 10~25% higher, Power density was more than 2 times, ASR was about 1/3, when exposed to $H_2$ atmosphere at $750^{\circ}C$ for a long time, Ni particles did not have any growth or cut off conduction path.

Synthesis and Properties of Nano-sized Ni-Fe Alloy Particle Dispersed ${Al_2}{O_3}$Nanocomposite (나노크기 Ni-Fe 합금입자 분산${Al_2}{O_3}$ 나노복합재료의 합성 및 특성)

  • Nam, Gung-Seok;O, Seung-Tak;Lee, Jae-Seong;Jeong, Yeong-Geun;Kim, Hyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.986-990
    • /
    • 2001
  • An optimum route to fabricate the $A1_2O_3/Fe-Ni$ alloy nanocomposites with sound microstructure and enhanced mechanical properties as well as magnetism was investigated. To prepare homogeneous nanocomposite powders of Fe-Ni alloy and $Al_2O_3$, the solution-chemistry routes using $Al_2O_3 \; Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders were applied. Microstructural observation of the powder mixture revealed that the Fe-Ni alloy particles of about 20 nm in size were homogeneously surrounded $A1_2O_3$, forming nanocomposite powder. The hot-pressed composite showed improved fracture toughness and magnetic response. These results suggest that the synergy materials with an improved mechanical properties and excellent functionality can be fabricated by controlled powder preparation and consolidation processing.

  • PDF

Toughness and Damping Properties of Nanostructured Ni-Al Alloys Produced by Mechanical Alloying Methods (기계적합금화법에 의해 제조된 NiAl 나노금속간화합물 소결체의 인성 및 제진특성)

  • 안인섭;김형범;김영도;김지순
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.143-148
    • /
    • 2000
  • NiAl alloy powders were prepared by mechanical alloying method and bulk specimens were produced using hot isostatic pressing techniques. This study focused on the transformation behavior and properties of Ni-Al mechanically alloyed powders and bulk alloys. Transformation behavior was investigated by differential scanning calorimeter (DSC), XRD and TEM. Particle size distribution and microstructures of mechanically alloyed powders were studied by particle size analyzer and scanning electron microscope (SEM). After 10 hours milling, XRB peak broadening appeared at the alloyed powders with compositions of Ni-36at%Al to 40at%Al. The NiAl and $Ni_3Al$ intermetallic compounds were formed after water quenching of solution treated powders and bulk samples at $1200^{\circ}C$, but the martensite phase was observed after liquid nitrogen quenching of solution treated powders. However, the formation of $Ni_3Al$ intermetallic compounds were not restricted by fast quenching into liquid nitrogen. It is considered to be caused by fast diffusion of atoms for the formation of stable $\beta$(NiAl) phase and $Ni_3Al$ due to nano sized grains during quenching. Amounts of martensite phase increased as the composition of aluminium component decreased in the Ni-Al alloy, which resulted in the increasing damping properties.

  • PDF

Synthesis of Nano-sized NiCuZn-ferrites for Chip Inductor and Properties with Calcination Temperature (칩인덕터용 NiCuZn-ferrites 나노 분말합성 및 하소 온도에 따른 특성 변화)

  • 허은광;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • In this study, nano-sized NiCuZn-ferrites for the multi-layered chip inductor application were prepared by a coprecipitation method and its electromagnetic properties were analyzed. Also, the property of low temperature sintering were studied with the initial heat treatment of powder.$(Ni_{0.4-x}Cu_xZn_{0.60})_{1+w}(Fe_2O_4)_{1-w}$ (x=0.2, w=0.03) were calcined at $300^{circ}C~750^{circ}C.$ The sintered NiCuZn-ferrites at $900^{\circ}C$ showed good apparent density $4.90g/cm^3,$ and magnetic properties of initial permeability 164 and quality factor 72. As the calcination temperature increase, the grain size of NiCuZn-ferrite increased with irregular grain distribution and its magnetic properties were deteriorated.

Fabrication of Nano-Sized Complex Oxide Powder from Waste Solution Produced during Shadow Mask Processing by Spray Pyrolysis Process (새도우마스크 제조 공정중 발생되는 폐액으로부터 분무열분해 공정에 의한 복합산화물 나노 분말 제조)

  • Yu Jae-Keun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.38-46
    • /
    • 2003
  • In this study, nano-sized Ni-ferrite and $Fe_2$$O_3$+NiO powder was fabricated by spray pyrolysis process in the condition of 1kg/$\textrm{cm}^2$ air pressure using the Fe-Ni complex waste acid solution generated during the manufacturing process of shadow mask. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the concentration of raw material solution and the nozzle tip size on the properties of powder were studied. As the reaction temperature increased from $800 ^{\circ}C$ to $1100^{\circ}C$, the average particle size of the powder increased from 40 nm to 100 nm, the structure of the powder gradually became solid, yet the distribution of the particle size appeared more irregular. Along with the increase of the reaction temperature, the fraction of the Ni-ferrite phase were also on the rise, and the surface area of the powder was greatly reduced. As the concentration of Fe in solution increased from 20g/l to 200g/l, the average particle size of the powder gradually increased from 30 nm to 60 nm, while the distribution of the particle size appeared more irregular. Along with the increase of the concentration of solution, tie fraction of the Ni-ferrite phase was on the rise, and the surface area of the powder was greatly reduced. Along with the increase of the nozzle tip size, the distribution of the particle size appeared more irregular, yet the average particle size of the powder showed no significant change. As the nozzle tip size increased from 1 mm to 2 mm, the fraction of the Ni-ferrite phase showed no significant change, while the surface area of the powder slightly reduced. As the nozzle tip size increased to 3 mm and 5 mm, the fraction of the Ni-ferrite phase gradually reduced, and the surface area of the powder slightly increased.

Synthesis and Characteristic of Ni/VSZ Cermet for High Temperature Electrolysis Prepared by Mechanical Alloying Method (Mechanical Alloying Method로 제조된 고온수전해용 Ni/YSZ cermet의 제조 및 특성)

  • Chae, Ui-Seok;Hong, Hyun-Sean;Choo, Soo-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2005
  • Ni/YSZ ($Y_2O_3$-stabilized $ZrO_2$) composite powder for a cathode material in high temperature electrolysis(HTE) was synthesized by a mechanical alloying method with Ni and YSZ powder. Microstructure of the composite and cell thickness for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. Employing the composite material, furthermore, the unit cell for HTE has been studied to evolve hydrogen from water. XRD patterns showed that the composites after wet mechanical alloying were composed of respective nano-sized crystalline Ni and YSZ. While ethanol as additive for mechanical alloying increased to $20\;{\mu}m$ of average particle size of the composites, alpha-terpineol effectively decreased to sub-micro size of that. This study has been found out the evolution of hydrogen by HTE reaction employing the fabricated cathode material, showing 1.4 ml/min of $H_2$ generation rate as increasing $20\;{\mu}m$ of cathode thickness.

Ni-P Coated Sn Powders as Anode for Lithium Secondary Batteries

  • Jo, Yong-Nam;Im, Dong-Min;Kim, Jae-Jung;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.88-93
    • /
    • 2007
  • Nano-sized Sn particles were coated with Ni-P layer using an electroless deposition method and their anodic performance was tested for lithium secondary batteries. Uniform coating layers were obtained, of which the thickness was controlled by varying the $Ni^{2+}$ concentration in the plating bath. It was found that the Ni-P layer plays two important roles in improving the anodic performance of Sn powder electrode. First, it prevents the inter-particle aggregation between Sn particles during the charge/discharge process. Second, it provides an electrical conduction pathway to the Sn particles, which allows an electrode fabrication without an addition of conductive carbon. A pseudo-optimized sample showed a good cyclability and high capacity ($>400mAh\;g^{-1}$) even without conductive carbon loading.

Surface Properties, Friction, Wear Behaviors of the HOVF Coating of T800 Powder and Tensile Bond Strength of the Coating on Ti64

  • Cho, T.Y.;Yoon, J.H.;Joo, Y.K.;Cho, J.Y.;Zhang, S.H.;Kang, J.H.;Chun, H.G.;Kwon, S.C.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.11-12
    • /
    • 2008
  • Micron-sized Co-alloy T800 powder was coated on Inconel718 (IN718) using high velocity oxygen fuel (HVOF) thermal spraying by the optimal coating process (OCP) determined from the best surface hardness of 16 coatings prepared by Taguchi program. The surface hardness improved 140-160 % from 399 Hv of IN718 to 560-630 Hv by the coating. Porosity of the coating was 1.0-2.7 %, strongly depending on spray parameters. Both friction coefficients (FC) and wear traces (WT) of the coating were smaller than those of IN718 substrate at both $25^{\circ}C$ and $538^{\circ}C$. FC and WT of IN718 and coating decreased with increasing the surface temperature. Tensile bond strength (TBS) and fracture location (FL) of Ti64/T800 were 8,770 psi and near middle of T800 coating respectively. TBS and FL of Ti64/NiCr/T800 were 8,740 psi and near middle of T800 coating respectively. This showed that cohesion of T800 coating was 8,740-8,770 psi, and adhesion of T800 on Ti64 and NiCr was stronger than the cohesion of T800.

  • PDF

Synthesis of (Co,Mg)Al2O4 and (Ni,Mg)Al2O4 Blue Ceramic Nano Pigment by Polymerized Complex Method (착체중합법을 이용한 (Co,Mg)Al2O4 및 (Ni,Mg)Al2O4 청색 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Kim, Jin-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • In this study, the properties of blue inorganic nano-pigments with a spinel structure were systematically investigated. We report the preparation of a blue ceramic nano-pigment and the Co and Ni substitutional effects on the blue color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of cobalt and nickel-based blue ceramic nano-pigments. Various compositions of $Co_xMg_{1-x}Al_2O_4$ and $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using apolymerized complex method. The obtained powder was preheated at $400^{\circ}C$ for 5 h and then calcined at $1000^{\circ}C$ for 5 h. XRD patterns of the (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ samples showed a single phase of the spinel structure in all compositions. TEM results indicated nano-sized pigments for (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ with a particle size ranging from 20 to 50 nm. The characteristics of the color tones of (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ were analyzed by CIE $L^*a^*b^*$ measurements. In addition, the thermal stability and the binding characteristics of (Co,Mg)$Al_2O_4$, (Ni,Mg)$Al_2O_4$ are discussed in terms of the TG-DSC and FT-IR results, respectively.

Technology of the Recycling of Waste Solution and Fabrication of Nano-Sized Powder by Spray Pyrolysis Process (분무열분해 공정에 의한 폐액의 재활용 및 나노 분말 제조 기술)

  • Yu Jae Keun;Park Si Hyun;Bang Shin Young;Han Jung Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.281-284
    • /
    • 2004
  • 본 연구에서는 분무열분해 공정에 의해 폐산용액으로부터 평균입도 100nm 이하의 나노 분말을 제조하였다. 용액 내의 Fe 성분의 농도가 20 g/$\iota$로부터 200 g/$\iota$로 증가됨에 따라 생성된 분말의 입도는 30 nm로부터 60 nm 까지 점점 증가하는 반면 입도분포는 더욱 불규칙하게 나타나고 있었다. 또한 용액 내의 농도 증가에 따라 $NiFe_2O_4$ 상의 생성비율이 현저히 증가하고 있었으며, 입자들의 비표면적은 현저히 감소하였다. 공기압력이 $1 kg/cm^2$까지는 분말의 평균입도는 80$\~$100 nm로 공기압력의 증가에 따라 분말들의 평균입도는 현저한 변화를 나타내지 않았으며, 생성된 상들의 비율의 현저한 변화도 나타나지 않았다. 공기압력이 $3kg/cm^2$로 증가하는 경우에는 평균입도가 약 70 nm로 감소하였으며 $NiFe_2O_4$의 생성비율도 감소하였다.

  • PDF