• Title/Summary/Keyword: Nano-processing

Search Result 553, Processing Time 0.028 seconds

Control of Size, Morphology and Crystalline Phase of Nanoparticles Using $CO_2$ Laser Irradiation ($CO_2$ 레이저 조사를 이용한 나노 입자의 크기, 형상과 결정상의 제어)

  • Lee, Dong-Geun;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.180-185
    • /
    • 2000
  • Nano crystalline or non-crystalline particles have been widely used in various industrial area, such as ceramics, catalysis, electronics, metallurgy and optic device. In all applications, synthesizing the particles as small as possible and controlling the crystalline phase according to its purpose are necessary for the enhancement of processing performance. In some cases, non-agglomerated particles may be necessary for solving the packing problems. This motivates our attempt of controlling size, morphology, phase of nano titania and silica particles. If one can enhance sintering rate of small aggregates independently of collision rate, one may expect that original aggregates can be changed into volume equivalent spheres and thereby the decrease of collision frequency due to the change leads to much smaller rate of growth of the particles. This is the basic idea of our control strategy.

  • PDF

Abrasive-reaction Interactions for Nano-composite Structures

  • T., Ketegenov;O., Tyumentseva;D., kasymbecova;N., Korobova;Z., Katranova;F., Urakaev
    • Journal of the Speleological Society of Korea
    • /
    • no.71
    • /
    • pp.13-17
    • /
    • 2006
  • New methods of nano sized material and composite coating preparations have been considered on the base of mathematical model of abrasion reaction interaction of milling and grinding bodies in planetary centrifugal mill. The essence of the method is the abrasive and oxidative wear of the milling bodies and amorphous (better inert) additives. Interactions between them has been supplied the necessary impulse of pressure and temperature on the impact frictional contacts and promoted chemical processes. The offered method can find application for such processing as sintering and geological minerals opening.

Nanotribology of PMMA Thin Films Using an AFM (AFM을 이용한 PMMA (Poly Methyl Methacrylate) 박막의 나노트라이볼로지 연구)

  • 김승현;김용석
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • Nano-scratch tests were performed on PMMA thin films spin-coated on a Si substrate using an atomic force microscopy (AFM) with loads ranging form 10nN to 100nN. At low loads, a ridge pattern was formed on the PMMA thin film surface. No wear particles were observed during the pattern-forming mild wear. At high loads, severe wear by plowing occurred, accompanied by wear particles. The film with the highest hardness showed the highest wear resistance. Friction force generated during the scratching was measured, which was closely related with surface deformation of the film. A simple empirical equation to deduce scratch hardness of the film from a linear fixed-distance scratch test was proposed, and scratching-speed dependency of the scratch hardness was displayed.

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.

Development of Fe-12%Cr Mechanical-Alloyed Nano-Sized ODS Heat-Resistant Ferritic Alloys

  • 김익수;최병영
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.265-265
    • /
    • 1999
  • The development of mechanical alloying (MA)-oxide dispersion strengthened (ODS) heat-resistant ferritic alloys of Fe-12%Cr with W, Ti and Y₂O₃additions were carried out. Fe-12%Cr alloys with 3%W, 0.4%Ti and 0.25% Y₂O₃additions showed a much finer and more uniform dispersion of oxide particles among the alloy system studied. Nano-sized oxides dispersed in the alloys suppress the grain growth during annealing at a high temperature and resulted in the remarkable improvement of creep strength. The oxide phase was identified as a complex oxide type of Y-Ti-O.

Fabrication of Nano Metal Compounds Using Porous Aluminum Oxide Films (기공성 알루미나 산화 피막을 이용한 나노 금속화합물의 제조)

  • Oh, Han-Jun;Jeong, Yong-Soo;Chi, Choong-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.248-254
    • /
    • 2010
  • Porous $Al_2O_3$ film can be utilized as template for fabrication of nano-structured materials. Porous anodic alumina layer as template was prepared by anodization of aluminum in oxalic acid, and the pore diameter and barrier-type alumina layer can be controlled for proper anodizing parameter by widening process in $H_3PO_4$ solution. The $SiO_2$ nanodot and Ni nanowire was fabricated using anodic alumina template and their characteristics were investigated using SEM and TEM with EDS. Especially the growth mechanism of $SiO_2$ nanodot in alumina membrane compared with thinning of the alumina barrier layer during anodization was also investigated.

SWIR 이미지 센서 기술개발 동향 및 응용현황

  • Lee, Jae-Ung
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.59-74
    • /
    • 2018
  • Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.

An Apparatus for Containerless Melting and Solidification of Materials Via Electrostatic Levitation (정전기 부유 무용기 용해 및 응고 장비)

  • Sung, Y.S.;Kim, M.H.
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.439-444
    • /
    • 2006
  • An apparatus capable of melting and solidifying various materials containerlessly in high vacuum via electrostatic levitation (ESL) has been developed for finding materials with new or improved properties and further building a database for processing materials in microgravity. Containerless solidification of semiconductors, metals, and alloys such as Si, Zr, Nb, Mo, $V_3Si$, and boron carbides has been carried out to test how various materials at how high temperatures can be processed by ESL. The materials in levitation became spherical at melting by their own surface tensions which were ideal for measuring intrinsic thermophysical properties of materials in the liquid state. Multiple cycles of melting and cooling were reproducibly repeated and radiative cooling curves were recorded.

Deposition Technology of Copper Thin Films for Multi-level Metallizations (다층배선을 위한 구리박막 형성기술)

  • 조남인
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.1-6
    • /
    • 2002
  • A low temperature process technology of copper thin films has been developed by a chemical vapor deposition technology for multi-level metallzations in ULSI fabrication. The copper films were deposited on TiN/Si substrates in helium atmosphere with the substrate temperature between $130^{\circ}C$ and $250^{\circ}C$. In order to get more reliable metallizations, effects on the post-annealing treatment to the electrical properties of the copper films have been investigated. The Cu films were annealed at the $5 \times10^{-6}$ Torr vacuum condition and the electrical resistivity and the nano-structures were measured for the Cu films. The electrical resistivity of Cu films shown to be reduced by the post-annealing. The electrical resistivity of 2.0 $\mu \Omega \cdot \textrm{cm}$ was obtained for the sample deposited at the substrate temperature of $180^{\circ}C$ after vacuum annealed at $300^{\circ}C$. The resistivity variations of the films was not exactly matched with the size of the nano-structures of the copper grains, but more depended on the contamination of the copper films.

  • PDF

High Performance Piezoelectric Transformers by PIM Using Nano-sized Powders

  • Yoon, Tae-Shik;Yoon, Man-Soon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.32-33
    • /
    • 2006
  • Processing and properties of high power piezoelectric transformer (PT) fabricated by PIM with nano-sized piezoelectric powders are demonstrated. The high power characteristics of a PMed dome-shaped PT were examined by the lighting test for a 55watt PL lamp. The 55watt PL lamp was successfully driven by the PIMed PT with sustaining efficiency higher than 98%. The transformer with ring/dot area ratio of 2.1 exhibited the maximum properties in terms of output power, efficiency and temperature stability.

  • PDF