• Title/Summary/Keyword: Nano-processing

Search Result 548, Processing Time 0.028 seconds

Quantitative Evaluation of Non-Carbon Content in the Single Wall Carbon Nanotube Soot using Thermogravimetric Analysis

  • Han, J.H.;An, K.H.;Lee, N.S.;Goak, J.C.;Jeong, M.S.;Choi, Y.C.;Oh, K.H.;Kim, K.K.;Lee, Y.H.
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.5-8
    • /
    • 2009
  • We measured the non-carbon content of single-walled carbon nanotubes (SWCNTs) in SWCNT soot using thermogravimetric analysis. The weight increased percentage by the oxidation of metal in the raw soot is well obtained by TGA graph which was confirmed with ICP-AES, XRD, and XPS. This work will be very useful for the purity precise evaluation of SWCNT with UN-vis-NIR spectroscopy.

Numerical Simulation of NIL Process Based on Continuum Hypothesis (연속체 가정을 통한 NIL 공정의 전산모사)

  • Kim, Seung-Mo;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.532-537
    • /
    • 2007
  • Nano imprint lithography(NIL) is a cost-efficient, high-throughput processing technique to transfer nano-scale patterns onto thin polymer films. Polymers used as the resist include UV cured resins as well as thermoplastics such as polymethyl-methacrylate(PMMA). In this study, an analytic investigation was performed for the NIL process of transferring nano scale patterns onto polymeric films. Process optimization calls for a thorough understanding of resist flow during the process. We carried out 2D and 3D numerical analyses of resist flow during NIL process. The simulation incorporated continuum-hypothesis and the effects of surface tension were taken into account. For a more effective prediction of free surface, fixed grid scheme with the volume of fluid (VOF) method were used. The simulation results were verified with experimental results qualitatively. And the parametric study was performed for various process conditions.

  • PDF

Development of Optical Head Unit for Nano Optical Probe Array (나노 광 프로브 어레이 구현을 위한 광학 헤드 유닛 개발)

  • Kim H.;Lim J.;Kim S.;Han J.;Kang S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.21-26
    • /
    • 2006
  • A optical head unit for nano optical probe array was developed. The optical probe array is generated by Talbot effect. The shape and thickness of microlens array(MLA) were designed to minimize the spot size at the foci of MLA. To increase the optical efficiency of the system and obtain the large tolerance for fabrication, aperture size was theoretically optimized. Then microlens illuminated aperture array(MLIAA) as an optical head unit was fabricated using a ultra violet(UV) molding process on aluminum aperture array. In this process, Al aperture array was fabricated separately using the photolithography and reactive ion etching(RIE) process. Optical properties of the generated optical probes were measured and compared at Talbot distance from the aperture array having a diameter of $1{\mu}m$ and MLIAA.

A method for Thermal Control of Nano Injection Molding using the Peltier Devices (펠티어 소자를 이용한 나노 사출 금형의 능동형 온도 제어)

  • Shin, H.;Kwon, J.;Hong, N.;Seo, Y.;Kim, B.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.337-342
    • /
    • 2008
  • The injection molding process has high accuracy and good reproducibility that are essential for mass production at low cost. Conventional molding processes typically use the water-based mold heating and air cooling methods. However, in the nano injection molding processes, this semi-active mold temperature control results in the several defects such as air-flow mark, non-fill, sticking and tearing, etc. In order to actively control temperature of the molds and effectively improve the quality of the molded products, the novel nano injection molding system, which uses active heating and cooling method, has been introduced. By using the Peltier devices, the temperature of locally adiabatic molds can be controlled dramatically and the quality of the molded patterns can be improved.

Atomistic Simulation of Sintering Mechanism for Copper Nano-Powders

  • Seong, Yujin;Hwang, Sungwon;Kim, See Jo;Kim, Sungho;Kim, Seong-Gon;Kim, Hak Jun;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.247-253
    • /
    • 2015
  • The sintering mechanisms of nanoscale copper powders have been investigated. A molecular dynamics (MD) simulation with the embedded-atom method (EAM) was employed for these simulations. The dimensional changes for initial-stage sintering such as characteristic lengths, neck growth, and neck angle were calculated to understand the densification behavior of copper nano-powders. Factors affecting sintering such as the temperature, powder size, and crystalline misalignment between adjacent powders have also been studied. These results could provide information of setting the processing cycles and material designs applicable to nano-powders. In addition, it is expected that MD simulation will be a foundation for the multi-scale modeling in sintering process.

A Study on Voltammetry System Design for Realizing High Sensitivity Nano-Labeled Sensor of Detecting Heavy Metals (중금속 검출용 고감도 나노표지센서 구현을 위한 볼타메트리 시스템 설계 연구)

  • Kim, Ju-Myoung;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.297-303
    • /
    • 2012
  • In this study, voltammetry system for realizing high sensitivity nano-labeled sensor of detecting heavy metals was designed, and optimal system operating conditions were determined. High precision digital to analog converter (DAC) circuit was designed to control applied unit voltage at working electrode and analog to digital converter (ADC) circuit was designed to measure the current range of $0.1{\sim}1000{\mu}A$ at counter electrode. Main control unit (MCU) circuit for controlling voltammetry system with 150 MHz clock speed, main memory circuit for the mathematical operation processing of the measured current value and independent power circuit for analog/digital circuit parts to reduce various noise were designed. From result of voltammetry system operation, oxidation current peaks which are proportional to the concentrations of Zn, Cd and Pb ions were found at each oxidation potential with high precision.

Mechanism and Characteristics of Nano-dispersed Powder by Pulsed Discharge Method

  • Kwon, Young-Soon;Ilyin, Alexander P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2003.10a
    • /
    • pp.27-32
    • /
    • 2003
  • The phenomenon of electrical explosion of conductors is considered in the context of the changes in the energy and structural states of the metal at the stages of energy delivery and relaxation of the primary products of EEC. It is shown that these changes are related to the forced interaction of an intense energy flux with matter and to the subsequent spontaneous relaxation processes. The characteristics of nano-sized metal powders are also discussed.

  • PDF

Quantitative Evaluation of Machinability of Free-Cutting Phosphor Bronze Alloy by using a Piezoelectric Tool Dynamometer

  • Cho, Hoon;Lee, Byoung-Soo;Ryu, Ho-Yeun;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.27 no.5
    • /
    • pp.217-220
    • /
    • 2007
  • 절삭특성은 재료를 원하는 형상으로 가공하기 위해 재료의 불필요한 부분을 제거할 경우 그 가공성이 쉽거나 어려움에 대한 정도로 전의될 수 있는데 동합금 소재의 절삭특성은 절삭시 발생된 칩의 형상이나 길이를 측정하거나 또는 공구계에 부착된 토오크 미터에 의해 절삭력을 간접적으로 측정하는 방법 등이 사용되어 오고 있다. 상기의 평가방 법은 절삭특성의 간접적인 평가방법이라는 한계와 정확도에 문제가 있는 실정이다. 본 연구에서는 압전형 공구동력계(Piezoelectric Tool Dynamometer)를 쾌삭인청동합금 피절삭물에 직접 부착하여 절삭가공시 절삭력은 정량적으로 직접 측정하고자 하였다. 쾌삭인청동합금의 소둔 열처리 시간이 증가할수록 결정립의 성장에 의한 연화현상과 납입자의 군집화(Clustering)는 관찰되었으나 그로 인한 절삭력 및 절삭에 필요한 에너지의 변화는 뚜렷하지 않았다.

A Facile Synthetic Method of Silver Nanoparticles with a Continuous Size Range from sub-10 nm to 40 nm

  • Piao, Longhai;Lee, Kyung-Hoon;Min, Byoung-Koun;Kim, Woong;Do, Young-Rag;Yoon, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.117-121
    • /
    • 2011
  • Size-controlled Ag nanoparticles (NPs) were prepared from the decomposition of Ag(I) carboxylates using ethanolamine derivatives as a reducing agent without an additional stabilizing agent. The size of the Ag NPs with a narrow size distribution (sub-10 nm to ca. 40 nm) was controlled precisely by varying the processing parameters, such as the type of reducing agent and the chain length of the carboxylate in the Ag(I) carboxylate. The optical properties, surface composition and crystallinity of the Ag NPs were characterized by ultraviolet-visible spectroscopy, gas chromatography-mass spectrometry, thermal gravimetric analysis, transmission electron microscopy and X-ray diffraction.

Unified Molding and Simulation for Nano-structured Tungsten Carbide

  • Park, Seong-Jin;Johnson, John L.;German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.362-363
    • /
    • 2006
  • Nano-structured tungsten carbide compacts with cobalt matrices (WC-Co) offer new opportunities for achieving superior hardness and toughness combinations. A unified modeling and simulation tool has been developed to produce maps of sintering pathways from nanocrystalline WC powder to sintered nano-structured WC-Co compacts. This tool includes (1) die compaction, (2) grain growth, (3) densification, (4) sensitivity analysis, and (5) optimization. All material parameters were obtained by curve fitting based on results with two WC-Co powders. Critical processing parameters are determined based on sensitivity analysis and are optimized to minimize grain size with high density.

  • PDF