• Title/Summary/Keyword: Nano-morphology

Search Result 681, Processing Time 0.028 seconds

Corrosion Behavior of Nanotube Formed on the Bone Plate of Ti-6Al-4V Alloy for Dental Use (치과용 Ti-6Al-4V 합금 골 고정판 표면에 형성된 나노튜브의 부식거동)

  • Kim, Won-Gi;Lee, Chung-Hwan;Chung, Chae-Heon;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • Titanium and titanium alloys are widely used for orthopedic and dental implants for their superior mechanical properties, low modulus, excellent corrosion resistance and good biocompatibility. In this study, corrosion behaviors of nanotube formed on the bone plate of Ti-6Al-4V alloy for dental use have been investigated. $TiO_2$ nanotubes were formed on the dental bone plates by anodization in $H_3PO_4$ containing 0.6 wt % NaF solution at $25^{\circ}C$. Electrochemical experiments were performed using a conventional three-electrode configuration with a platinum counter electrode and a saturated calomel reference electrode. Anodization was carried out using a scanning potentiostat (EG&G Co, Model 263A USA), and all experiments were conducted at room temperature. The surface morphology was observed using field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy(EDS). The corrosion behavior of the dental bone plates was examined using potentiodynamic test(potential range of -1500~2000 mV) in a 0.9% NaCl solution by potentiostat (EG&G Co, PARSTAT 2273. USA). The inner diameter of nanotube was about 150~180 nm with wall thickness of about 20 nm. The interspace of nanotube to nanotube was 50 nm. The passive region of the nanotube formed bone plates showed the broad range compared to non-nanotube formed bone plates. The corrosion surface of sample was covered with corrosion products.

Layered Metal Hydroxides Containing Calcium and Their Structural Analysis

  • Kim, Tae-Hyun;Heo, Il;Paek, Seung-Min;Park, Chung-Berm;Choi, Ae-Jin;Lee, Sung-Han;Choy, Jin-Ho;Oh, Jae-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1845-1850
    • /
    • 2012
  • Layered metal hydroxides (LMHs) containing calcium were synthesized by coprecipitation in solution having two different trivalent metal ions, iron and aluminum. Two mixed metal solutions ($Ca^{2+}/Al^{3+}$ and $Ca^{2+}/Fe^{3+}$ = 2/1) were added to sodium hydroxide solution and the final pH was adjusted to ~11.5 and ~13 for CaAl-and CaFe-LMHs. Powder X-ray diffraction (XRD) for the two LMH samples showed well developed ($00l$) diffractions indicating 2-dimensional crystal structure of the synthesized LMHs. Rietveld refinement of the X-ray diffraction pattern, the local structure analysis through X-ray absorption spectroscopy, and thermal analysis also confirmed that the synthesized precipitates show typical structure of LMHs. The chemical formulae, $Ca_{2.04}Al_1(OH)_6(NO_3){\cdot}5.25H_2O$ and $Ca_{2.01}Fe_1(OH)_6(NO_3){\cdot}4.75H_2O$ were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Particle morphology and thermal behavior for the synthesized LMHs were examined by field emission scanning electron microscopy and thermogravimetricdifferential scanning calorimetry.

Effects of Plasma Treatment on Mechanical Properties of Jute Fibers and Their Composites with Polypropylene (황마섬유 및 황마-폴리프로필렌 복합체의 특성에 미치는 플라즈마 처리영향)

  • Huh, Yang Il;Bismark, Mensah;Kim, Sungjin;Lee, Hong Ki;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.310-317
    • /
    • 2012
  • A jute fiber surface was modified with argon gas in a cylinder type RF plasma generator to enhance the interfacial bond strength and to optimize the plasma treatment condition. The plasma power, gas pressure, and treat time were varied to figure out any effect of those parameters on the morphology and mechanical strength of jute fibers, and the interfacial bond strength for a model composite with polypropylene resin. As the severity of plasma treatment was increased, the surface of jute fibers became rougher. Gas pressure was less effective in roughening of the surface compared with those of treat time and plasma power. Approximately 25% drop in tensile strength of jute fibers was observed for the parameters of treat time and plasma power, while little deterioration was found for gas pressure, with increasing the severity. Based on the interfacial shear strength (IFSS), the optimum plasma treatment condition was determined to be treat time of 30 s, plasma power of 40 W, and gas pressure of 30 mTorr.

Antimicrobial efficacy and safety analysis of zinc oxide nanoparticles against water borne pathogens

  • Supraja, Nookala;Avinash, B.;Prasad, T.N.V.K.V.
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.127-140
    • /
    • 2017
  • Metal nanoparticles have been intensively studied within the past decade. Nano-sized materials have been an important subject in basic and applied sciences. Zinc oxide nanoparticles have received considerable attention due to their unique antibacterial, antifungal, and UV filtering properties, high catalytic and photochemical activity. In this study, microbiological aspects of scale formation in PVC pipelines bacteria and fungi were isolated. In the emerging issue of increased multi-resistant properties in water borne pathogens, zinc oxide (ZnO) nanoparticle are being used increasingly as antimicrobial agents. Thus, the minimum bactericidal concentration (MBC) and minimum fungal concentration of ZnO nanoparticles towards pathogens microbe were examined in this study. The results obtained suggested that ZnO nanoparticles exhibit a good anti fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 30 ppm). ZnO nanoparticles can be a potential antimicrobial agent due to its low cost of production and high effectiveness in antimicrobial properties, which may find wide applications in various industries to address safety issues. Stable ZnO nanoparticles were prepared and their shape and size distribution characterized by Dynamic light scattering (35.7 nm) and transmission electron microscopic TEM study for morphology identification (20 nm), UV-visible spectroscopy (230 nm), X-ray diffraction (FWHM of more intense peak corresponding to 101 planes located at $36.33^{\circ}$ using Scherrer's formula), FT-IR (Amines, Alcohols, Carbonyl and Nitrate ions), Zeta potential (-28.8). The antimicrobial activity of ZnO nanoparticles was investigated against Bacteria and Fungi present in drinking water PVC pipelines biofilm. In these tests, Muller Hinton agar plates were used and ZnO nanoparticles of various concentrations were supplemented in solid medium.

Functionalization of Electrospun Nano/Micro-fibrous Scaffolds Using Gamma-ray Irradiation (감마선 조사법을 이용한 전기방사 나노/마이크로 섬유 지지체의 표면 기능화)

  • Lim, Jong-Young;Shin, Young Min;Choi, Jong-Bae;Jeong, Jin-Oh;Gwon, Hui-Jeong;Jeong, Sung In;Park, Jong-Seok;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • In tissue engineering application, a fibrous structure of scaffolds has been issued as an alternative system to regulate cell survival and tissue regeneration, and electrospinning technique has been popularly used to generate fibrous meshes or sheets mimicking the structure of native extracellular matrix (ECM). However, recent strategy in the scaffold development is expanded to provide the structural property as well as a biological property of native ECM, a variety of surface modification techniques have been used to introduce biological property. In this study, we developed biomimetic poly(L-lactide-co-${\varepsilon}$-caprolactone) (PLCL) nano- and micro-fibrous scaffolds as a unique platform with structural and biological properties with native ECM using electrospinning method and gamma-ray irradiation. Surface morphology of the scaffolds was observed by scanning electron microscopy, and alteration of surface property was evaluated with toluidine blue O staining, water contact angle measurement and ATR-FTIR analysis.

Large Area Deposition of Biomimetic Polydopamine-Graphene Oxide Hybrids using Langmuir-Schaefer Technique (랭뮤어-쉐퍼 기법 이용 생체모사 폴리도파민-산화그래핀 복합체 대면적 적층 기법 연구)

  • Kim, Tae-Ho;Song, Seok Hyun;Jo, Kyung-Il;Koo, Jaseung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.110-115
    • /
    • 2019
  • Graphene oxide has been gathering interests as a way to exfoliate graphene. Since the oxidation group of graphene oxide can hydrogen bond with various functional groups, tremendous efforts have been actively conducted to apply various applications. However, graphene oxide alone cannot substantially possess the mechanical properties required for the practical application. Therefore, in this study, polydopamine, which is a bio-mimetic mussel protein-inspired material, was combined with graphene oxide to form a large-area composite membrane at the liquid-gas interface. In addition, the morphology of the polydopamine-graphene oxide composite thin film was also controlled to obtain a composite membrane having a nano-wrinkle structure. It can be expected to be used in the next generation seawater desalination membranes or carbon composites because it can form mechanically superior and sophisticated nanostructures.

Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor

  • Li, Yi;Chen, Jun;Han, Xiao;Li, Yinghui;Zhang, Ziqiang;Ma, Yanwen
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850146.1-1850146.9
    • /
    • 2018
  • The rapid development of smart textiles requires the large-scale fabrication of conductive fibers. In this study, we develop a simple, scalable and low-cost capillary-driven self-assembly method to prepare conductive fibers with uniform morphology, high conductivity and good mechanical strength. Fiber-shaped flexible and stretchable conductors are obtained by coating highly conductive and flexible silver nanowires (Ag NWs) on the surfaces of yarn and PDMS fibers through evaporation-induced flow and capillary-driven self-assembly, which is proven by the in situ optical microscopic observation. The density of Ag NWs and linear resistance of the conductive fibers could be regulated by tuning the assembly cycles. A linear resistance of $1.4{\Omega}/cm$ could be achieved for the Ag NWs-coated nylon, which increases only 8% after 200 bending cycle, demonstrating high flexibility and mechanical stability. The flexible and stretchable conductive fibers have great potential for the application in wearable devices.

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

Ni Nanoparticle Anchored on MWCNT as a Novel Electrochemical Sensor for Detection of Phenol

  • Wang, Yajing;Wang, Jiankang;Yao, Zhongping;Liu, Chenyu;Xie, Taiping;Deng, Qihuang;Jiang, Zhaohua
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850134.1-1850134.10
    • /
    • 2018
  • Increasing active sites and enhancing electric conductivity are critical factors to improve sensing performance toward phenol. Herein, Ni nanoparticle was successfully anchored on acidified multiwalled carbon nanotube (a-MWCNT) surface by electroless plating technique to avoid Ni nanoparticle agglomeration and guarantee high conductivity. The crystal structure, phase composition and surface morphology were characterized by XRD, SEM and TEM measurement. The as-prepared Ni/a-MWCNT nanohybrid was immobilized onto glassy carbon electrode (GCE) surface for constructing phenol sensor. The phenol sensing performance indicated that Ni/a-MWCNT/GCE exhibited an amazing detection performance with rapid response time of 4 s, a relatively wide detection range from 0.01 mM to 0.48 mM, a detection limit of $7.07{\mu}M$ and high sensitivity of $566.2{\mu}A\;mM^{-1}\;cm^{-2}$. The superior selectivity, reproducibility, stability and applicability in real sample of Ni/a-MWCNT/GCE endowed it with potential application in discharged wastewater.

Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-Doped Diamond for Detection of Glucose (보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.606-610
    • /
    • 2019
  • In this study, we demonstrated that the nonenzymatic glucose sensor based on the flexible carbon fiber bundle electrode with BDD nanocomposites (CF-BDD electrode). As a nano seeding method for the deposition of BDD on flexible carbon fiber, electrostatic self-assembly technique was employed. Surface morphology of BDD coated carbon fiber electrode was observed by scanning electron microscopy. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. This CF-BDD electrode exhibited a large surface area, a direct electron transfer between the redox species and the electrode surface and a high catalytic activity, resulting in a wider linear range (3.75~50 mM), a faster response time (within 3 s) and a higher sensitivity (388.8 nA/mM) in comparison to a bare CF electrode. As a durable and flexible electrochemical sensing electrode, this brand new CF-BDD scheme has promising advantages on various electrochemical and wearable sensor applications.