• 제목/요약/키워드: Nano-morphology

Search Result 681, Processing Time 0.027 seconds

Preparation of Anatase Particles through Electro-Dialysis of TiCl4 Aqueous Solution

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.325-331
    • /
    • 2016
  • Anatase particles of titanium dioxide were prepared from $TiCl_4$ aqueous solution by using an electro-dialysis [ED] process. For the preparation of an aqueous solution of $TiCl_4$ precipitates, $TiCl_4$ liquid frozen in ice was transferred to a neck flask and then hydrolyzed using deionized [DI] $H_2O$. During the hydrolysis of the $TiCl_4$ solution at $0^{\circ}C$, a slurry solution of $TiOCl_2$ was obtained and the color changed from red to orange. The ED process was applied for the removal of chlorine content in the slurry solution. Two kinds of hydrolyzed slurry solution with lower [$Ti^{4+}$] and higher [$Ti^{4+}$] were sampled and the ED process was applied for the samples according to the removal time of [$Cl^-$]. With de-chlorination, the solution status changed from sol to gel and the color quickly changed to blue. Finally, white crystalline powders were formed and the phase was confirmed by XRD to be anatase crystallites. The morphology of the hydrous titania particles in the solution was observed by FE-SEM. The hydrous titania particles were nano-crystalline, and easily coagulated with drying.

Fabrication Characteristics and Electrochemical Studies of SOFC Unit Cell using ScSZ-based Electrolyte Powder prepared by Co-precipitation Synthesis (공침법에 의한 고체산화물연료전지용 ScSZ계 전해질의 제조공정 특성 및 전기화학적 평가)

  • Kang, Ju Hee;Lee, Ho Jae;Kim, Ho-Sung;Jeong, Jong Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.138.2-138.2
    • /
    • 2010
  • Scandium-doped zirconium, ScSZ-based electrolyte, provides higher oxygen conductivity than YSZ and nano-based electrolyte materials are ideal for fabricating thin film electrolyte membrane of SOFC unit cell. Moreover, it may be applied to anode and cathode as well as electrolyte as ionic conductor. In this report, nano-based ScSZ-based electrolyte powder was prepared by co-precipitation synthesis. The particle size, surface area and morphology of the powder were observed by SEM and BET. Thin film electrolyte of under $10{\mu}m$ was fabricated by tape casting and co-firing using the synthesized ScSZ-based powders, and ionic conductivity and gas permeability of electrolyte film were evaluated. Finally, the SOFC unit cell was fabricated using the anode-supported electrolyte prepared by a tape casting method and co-sintering. Electrochemical evaluations of the SOFC unit cell, including measurements such as power density and impedance, were performed and analyzed.

  • PDF

Corrosion Characteristics of Ti-xTa Alloys with Ta contents (Ta 함량에 따른 Ti-xTa 합금의 부식특성)

  • Kim, H.J.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at $1000^{\circ}C$ and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at $36.5{\pm}1^{\circ}C$. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy.

Improving the Crystallinity of Heteroepitaxial Single Crystal Diamond by Surface Modification (표면개질에 의한 헤테로에피텍시 단결정 다이아몬드의 결정성 향상)

  • Bae, Mun Ki;Kim, Min Su;Kim, Seong Woo;Yoon, Su Jong;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.124-128
    • /
    • 2020
  • Recently, many studies on growth of single crystal diamond using MPECVD have been conducted. The heteroepitaxial method is one of the methods for growing diamonds on a large-area substrate, and research on synthesis of single crystal diamonds using SrTiO3, MgO, and sapphire substrates has been attempted. In addition, research is being conducted to reduce the internal stress generated during diamond growth and to improve the crystallinity of the diamond. The compressive stress generated therein causes peeling and bowing from the substrate. This study aimed to synthesize heteroepitaxial single crystal diamonds with high crystallinity by surface modification. A diamond thin film was first grown on a sapphire/Ir substrate by MPECVD, and then etched with H2 gas to modified the morphology and roughness of the surface. A secondary diamond layer was grown on the surface, and the internal stress, crystallinity of the diamond were investigated. As a result, the fabrication of single crystal diamonds with improved crystallinity was confirmed.

Growth of Nano- and Microstructured Indium Nitride Crystals by the Reaction of Indium Oxide with Ammonia

  • Jung, Woo-Sik;Ra, Choon-Sup;Min, Bong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1354-1358
    • /
    • 2005
  • Nano- and microstructured indium nitride crystals were synthesized by the reaction of indium oxide ($In_2O_3$) powder and its pellet with ammonia in the temperature range 580-700 ${^{\circ}C}$. The degree of nitridation of $In_2O_3$ to InN was very sensitive to the nitridation temperature. The formation of zero- to three-dimensional structured InN crystals demonstrated that $In_2O_3$ is nitridated to InN via two dominant parallel routes (solid ($In_2O_3$)-to-solid (InN) and gas ($In_2O$)-to-solid (InN)). The growth of InN crystals with such various morphologies was explained by the vapor-solid (VS) mechanism where the degree of supersaturation of In vapor determines the growth morphology and the vapor was mainly by the reaction of $In_2O$ with ammonia and partially by sublimation of solid InN. The pellet method was proven to be useful to obtain homogeneous InN nanowires.

Pore Structure Modification and Characterization of Porous Cordierite with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 코디어라이트의 기공구조 개질 및 특성평가)

  • Kim, Ik-Whan;Kim, Jun-Gyu;Lee, Hwan-Sup;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.132-137
    • /
    • 2008
  • The main purpose of this study is enhancing the filtering efficiency, performance and durability of filter by growing SiC whiskers on cordierite honeycomb substrate. The experiment was performed by Chemical Vapor Infiltration (CVI) in order to control pore morphology of substrate. Increasing the mechanical strength of porous substrate is one of important issues. The formation of "networking structure" in the pore of porous substrate increased mechanical strength. The high pressure gas injection to the specimen showed that a little of whiskers were separated from substrate but additional film coating enhanced the stability of whisker at high pressure gas injection. Particle trap test was performed. More nano-particle was trapped by whisker growth at the pore of substrate. Therefore it is expected that the porous cordierite which deposited the SiC whisker will be the promising material for the application as filter trapping the nano-particles.

Effects of Hafnium Addition on the Pitting Corrosion Behavior of Ti Alloys in Electrolyte Containing Chloride Ion (염소이온 함유된 용액에서 Ti합금의 부식특성에 미치는 Hafnium함량의 영향)

  • Kim, Sung-Hwan;Choe, Han-Cheol
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.191-195
    • /
    • 2012
  • The aim of this study was to investigate effects of hafnium content on the corrosion behavior of Ti alloys in electrolyte containing chloride ion. For this study, Ti-Hf binary alloys contained 10 wt%, 20 wt% and 30 wt% Hf were manufactured in a vacuum arc-melting furnace and subjected to heat treatment for 12h at $1000^{\circ}C$ in an argon atmosphere. The pitting corrosion behavior of the specimens was examined through potentiodynamic and potentiostatic tests in 0.9 wt% NaCl electrolyte at $36.5{\pm}1^{\circ}C$. The corrosion morphology of Ti-xHf alloys was investigated using optical microscopy (OM) and X-ray diffractometer (XRD). From the optical microstructures and XRD results, needle-like martensite ($\alpha$') phases of the Ti-xHf alloys increased with an increase of Hf addition. Corrosion current density $(I_{corr})$ and current density $(I_{300mV})$ in passive region decreased, whereas, corrosion potential increased with Hf content. At the constant potential ($300mV_{SCE}$), current density decreased as time increased.

Highly Flexible and Transparent ISO/Ag/ISO Multilayer Grown by Roll-to-roll Sputtering System

  • Cho, Da-Young;Shin, Yong-Hee;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.278.2-278.2
    • /
    • 2014
  • We have investigated the highly flexible and transparent Si-doped $In_2O_3$(ISO)/Ag/ISO multilayer grown on polyethylene terephthalate (PET) substrates using a roll-to-roll sputtering system. The electrical and optical properties of ISO/Ag/ISO multilayer electrodes depended on the insertion of a nano-size Ag layer. Due to the high conductivity of a nano-size Ag layer, the optimized ISO/Ag/ISO multilayer electrodes showed the lowest resistivity of $3.679{\times}10^{-5}Ohm-cm$, even though the ISO/Ag/ISO multilayer electrodes was sputtered at room temperature. Furthermore, the ISO/Ag/ISO multilayer electrodes exhibited a high transmittance of 86.33%, because of the anti-reflection effect, comparable to Sn-doped $In_2O_3$ (ITO) electrodes. In addition, the ISO/Ag/ISO multilayer electrodes had a very smooth surface morphology without surface defects and showed good flexibility. The flexible OSCs fabricated on ISO(30nm)/Ag(8nm)/ISO(30nm) multilayer electrode showed a power conversion efficiency of 3.272%. This result indicates that the ISO/Ag/ISO multilayer is a promising transparent conducting electrode for flexible OSCs.

  • PDF

Preparation and Release Characterization of Osmotic Granule Nifedipine Delivery System (니페디핀 삼투성 과립 시스템의 제조와 약물 방출 특성)

  • Jeong, Sung-Chan;Cho, Young-Ho;Lee, Soo-Young;Lee, Bong;Kim, Moon-Suk;Kang, Gil-Son;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.11-17
    • /
    • 2006
  • The objective of this study was to confirm the effect of the type of dissolution media and paddle speed on nifedipine (ND) release profile from osmotic granule and the storage stability. Osmotic granule was manufactured by fluidized bed coating method. At each coating step, morphology of osmotic granule was differed. The size of osmotic granule was $750\;{\mu}m$ at 3 wt% membrane thickness. ND release was changed in diverse dissolution media, paddle speed. ND release is governed by not only osmotic pressure but diffusion from osmotic granule. ND release from osmotic granule decreased as storage period increased. These may be caused by liquid excipient which has low molecular weight. Storage stability of osmotic granule could be improved by removing liquid excipient from semipermeable membrane.

Morphological Properties of Poly(ε-caprolactone) Nano/Microcapsules Prepared by Emulsion-diffusion Method (유화-확산법에 의해 제조된 폴리(ε-카프로락톤) 나노/마이크로캡슐의 형태적 특성)

  • Kim, Hea-In;Jeong, Cheon-Hee;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.22 no.3
    • /
    • pp.229-238
    • /
    • 2010
  • Poly($\varepsilon$-caprolactone) nano/microcapsules(nmcPCL) containing phytoncide oil were synthesized by emulsion diffusion method using ethyl acetate and poly(vinyl alcohol) (PVA) as an organic solvent and an emulsion stabilizer respectively. The influence of the degree of saponofication of the PVA and the weight ratio of core to wall materials was investigated to design nanocapsules in terms of particle size, morphology, and emulsion stability. The encapsulated nmcPCL were characterized by FT-IR spectrometry, particle size analyzer and scanning electron microscope. Mean size of nanocapsules prepared with PVA with a degree of saponofication of 87% was smaller than those of PVA with a degree of saponofication of 98.5% and the mean particle size of the capsules decreased with increasing core/shell ratio.