• 제목/요약/키워드: Nano-molding process

검색결과 96건 처리시간 0.026초

나노섬유 분산과 섬유 배향성에 따른 탄소섬유 나노 복합재료의 기계적 특성 (Mechanical Properties of Carbon Fiber Nano Composites for Nano-fiber Additives and Fabric Orientation)

  • 송준희;최준용;김연직
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.93-99
    • /
    • 2012
  • The mechanical properties of nano composites were evaluated for structural performance in order to enhance their applicability to the car and machine industrial fields. Carbon fiber reinforced plastics (CFRP) and GFRP were manufactured by vacuum-assisted resin transfer molding (VARTM) process with good mechanical properties. Tensile test was conducted to obtain the process factor of each composite. Also, carbon nano fiber (CNF) was dispersed in the composites and the relationship between the mechanical property and the CNF fraction was compared. The tensile strength and stiffness of 0/90 laminated CFRP were the best. CFRP/CNF (0.5 wt.%) was confirmed to be an excellent material for its elasticity and tensile strength.

전자빔과 무반사층이 없는 크롬 마스크를 이용한 나노그레이팅 사출성형용 고종횡비 100nm 급 니켈 스템퍼의 제작 (Fabrication of High Aspect Ratio 100nm-scale Nickel Stamper Using E-beam Lithography for the Injection molding of Nano Grating Patterns)

  • 서영호;최두선;이준형;제태진;황경현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.978-982
    • /
    • 2004
  • We present high aspect ratio 100nm-scale nickel stamper using e-beam lithography process and Cr/Qz mask for the injection molding process of nano grating patterns. Conventional photolithography blank mask (CrON/Cr/Qz) consists of quartz substrate, Cr layer of UV protection and CrON of anti-reflection layer. We have used Cr/Qz blank mask without anti-reflection layer of CrON which is non-conductive material and ebeam lithography process in order to simplify the nickel electroplating process. In nickel electroplating process, we have used Cr layer of UV protection as seed layer of nickel electroplating. Fabrication conditions of photolithography mask using e-beam lithography are optimized with respect to CrON/Cr/Qz blank mask. In this paper, we have optimized e-beam lithography process using Cr/Qz blank mask and fabricated nickel stamper using Cr seed layer. CrON/Cr/Qz blank mask and Cr/Qz blank mask require optimal e-beam dosage of $10.0{\mu}C/cm^2$ and $8.5{\mu}C/cm^2$, respectively. Finally, we have fabricated $116nm{\pm}6nm-width$ and $240nm{\pm}20nm-height$ nickel grating stamper for the injection molding pattern.

  • PDF

양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발 (Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process)

  • 신홍규;박용민;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구 (Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing)

  • 진재호;권다인;오재환;강도현;김관오;윤재성;유영은
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

나노 패턴의 전사성 향상을 위한 고온 기체 분사를 이용한 금형 표면의 가열 기법 (Surface Heating Method Using Hot Jet Impingement for Improving Transcription of Nano-Pattern)

  • 김경하;유영은;제태진;최두선;김선경
    • 소성∙가공
    • /
    • 제16권1호
    • /
    • pp.9-14
    • /
    • 2007
  • In this paper, a mold temperature control method for injection molding is proposed. The inner surface of mold is locally heated by jet impingement to improve pattern transcription. Heating by hot jet is completed while the mold is open. An experimental system that realizes the proposed idea has been built, which includes mold, nozzle assembly and heater. Actual injection molding process including the proposed heating procedure has been conducted to verify the validity of the method. The process has been done for several conditions with different jet temperatures and duration of heating. The results from different conditions are compared.

AAO를 이용한 나노 패턴 마스터 제작에 관한 연구 (Study on Fabrication of Highly Ordered Nano Patterned Master by Using Anodic Aluminum Oxidation)

  • 신홍규;권종태;서영호;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.368-370
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. The resulting good filled uniform nano molded structure through hot embossing molding process shows the validity of the fabricated nano pattern masters.

  • PDF

유한요소 해석을 이용한 나노임프린트 가압 공정에서 발생하는 결함 원인에 대한 연구 (A Study on Cause of Defects in NIL Molding Process using FEM)

  • 송남호;손지원;김동언;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.364-367
    • /
    • 2007
  • In nano-imprint lithography (NIL) process, which has shown to be a good method to fabricate polymeric patterns, several kinds of pattern defects due to thermal effects during polymer flow and mold release operation have been reported. A typical defect in NIL process with high aspect ratio and low resist thickness pattern is a resist fracture during the mold release operation. It seems due to interfacial adhesion between polymer and mold. However, in the present investigation, FEM simulation of NIL molding process was carried out to predict the defects of the polymer pattern and to optimize the process by FEA. The embossing operation in NIL process was investigated in detail by FEM. From the analytical results, it was found that the lateral flow of polymer resin and the applied pressure in the embossing operation induce the weld line and the drastic lateral strain at the edge of pattern. It was also shown that the low polymer-thickness result in the delamination of polymer from the substrate. It seems that the above phenomena cause the defects of the final polymer pattern. To reduce the defect, it is important to check the initial resin thickness.

  • PDF

미세 패턴 사출 성형에서의 이형력에 대한 성형 조건의 영향 평가 (Effect of Molding Conditions on Demolding Force During Injection Molding of Parts with Micro-features)

  • 박시환;유영은;이우일
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.127-132
    • /
    • 2014
  • Micro/nano-injection molding is one of the main processing techniques for polymer micro-fabrication. Most of the difficulties encountered in polymer micro-molding are caused by the demolding, rather than the filling of molds. Therefore, studying the demolding process is vitally important for manufacturing polymer replicas. The most important parameters are the thermal stress, friction and adhesion forces, and mechanical strength of the resist. In this research, we determinedthe effects of the processing conditions on the ejection force for cases involving two common thermoplastic polymers. The results showed that the processing conditions noticeably influenced the ejection force.

광자결정 도파로 성형용 PDMS 스탬프 제작 (PDMS Stamp Fabrication for Photonic Crystal Waveguides)

  • 오승훈;최두선;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.153-158
    • /
    • 2007
  • Recently nano imprint lithography to fabricate photonic crystal on polymer is preferred because of its simplicity and short process time and ease of precise manufacturing. But, the technique requires the precise mold as an imprinting tool for good replication. These molds are made of the silicon, nickel and quartz. But this is not desirable due to complex fabrication process, high cost. So, we describe a simple, precise and low cost method of fabricating PDMS stamp to make the photonic crystals. In order to fabricate the PDMS mold, we make the original pattern with designed hole array by finding the optimal electron beam writing condition. And then, we have tried to fabricate PDMS mold by the replica molding with ultrasonic vibration and pressure system. We have used the cleaning process to solve the detaching problem on the interface. Using these methods, we acquired the PDMS mold for photonic crystals with characteristics of a good replication. And the accuracy of replication shows below 1% in 440nm at diameter and in 610nm at lattice constant by dimensional analysis by SEM and AFM.

나노 광 프로브 어레이 구현을 위한 광학 헤드 유닛 개발 (Development of Optical Head Unit for Nano Optical Probe Array)

  • 김홍민;임지석;김석민;한정원;강신일
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.21-26
    • /
    • 2006
  • A optical head unit for nano optical probe array was developed. The optical probe array is generated by Talbot effect. The shape and thickness of microlens array(MLA) were designed to minimize the spot size at the foci of MLA. To increase the optical efficiency of the system and obtain the large tolerance for fabrication, aperture size was theoretically optimized. Then microlens illuminated aperture array(MLIAA) as an optical head unit was fabricated using a ultra violet(UV) molding process on aluminum aperture array. In this process, Al aperture array was fabricated separately using the photolithography and reactive ion etching(RIE) process. Optical properties of the generated optical probes were measured and compared at Talbot distance from the aperture array having a diameter of $1{\mu}m$ and MLIAA.