• Title/Summary/Keyword: Nano-material

Search Result 2,414, Processing Time 0.024 seconds

A Study on the Treatment of Oil Contaminated Soils with Micro-nano Bubbles Soil Washing System (유류오염토양 처리를 위한 마이크로나노버블 토양세척에 관한 연구)

  • Choi, Ho-Eun;Jung, Jin-Hee;Han, Young-Rip;Kim, Dae-Yong;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1329-1336
    • /
    • 2011
  • The objectives of this study are to examine the processing of oils contamination soil by means of using a micronano-bubble soil washing system, to investigate the various factors such as washing periods, the amount of micro-nano bubbles generated depending on the quantity of acid injection and quantity of air injection, to examine the features involved in the elimination of total petroleum hydrocarbons (TPHs) contained in the soil, and thus to evaluate the possibility of practical application on the field for the economic feasibility. The oils contaminated soil used in this study was collected from the 0~15 cm surface layer of an automobile junkyard located in U City. The collected soil was air-dried for 24 hours, and then the large particles and other substances contained in the soil were eliminated and filtered through sieve No.10 (2 mm) to secure consistency in the samples. The TPH concentration of the contaminated soil was found to be 4,914~5,998 mg/kg. The micronano-bubble soil washing system consists of the reactor, the flow equalization tank, the micronano- bubble generator, the pump and the strainer, and was manufactured with stainless material for withstanding acidic phase. When the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 30 minutes were respectively identified as 4,931 mg/kg (18.9%), 4,678 mg/kg (18.9%) and, 4,513 mg/kg (17.7%). And when the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 120 minutes were respectively identified as4,256 mg/kg (22.3%), 4,621 mg/kg (19.7%) and 4,268 mg/kg (25.9%).

A Study on the Effects of Semi-Gel Electrolyte in Electricity Storage Battery (Semi-Gel 전해액이 전력저장용 배터리에 미치는 영향에 관한 연구)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.193-198
    • /
    • 2012
  • The following results are from the test of semi-gel electrolyte to store energy efficiently and use advanced VRLA batteries by photovoltaic and wind power generation. Semi-Gel electrolyte with Silica 5% became Gel after 1 and half hour. It shows it is the most suitable time that the electrolyte can be absorbed into the separator and active material of plate to be gel. The test also says that semi-gel electrolyte shows the much better performance for low-rate discharge and the liquid electrolyte is good for high-rate discharge because the reaction rate of gel electrolyte is slower than liquid one for high-rate discharge performance. The test with DOD10% and DOD100% says that 5% silica electrolyte shows much better performance for life efficiency than liquid one. Because semi-gel electrolyte increase the efficiency of gas recombination at the chemical reaction of VRLA battery and it makes minimizing the reduction of electrolyte. Using the 5% silica electrolyte in order to improve the stroage efficiency and life performance for photovoltic and wind power generation, it causes improving by 4.8% for DOD100% and 20% for DOD10%.

Fabrication of $TiO_2$ Electrode Containing Scattering Particles in Dye-Sensitized Solar Cells (산란 입자를 포함하는 염료감응 태양전지용 $TiO_2$ 전극 제조)

  • Lee, Jin-Hyoung;Lee, Tae-Kun;Kim, Cheol-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2011
  • The energy conversion efficiency of DSSCs (Dye-Sensitized Solar Cells) is dependent on the powder size, the structure, and the morphology of $TiO_2$ electrode. The higher efficiency is obtained with high surface area of the nanoanatase-$TiO_2$ powder adsorbed onto a lot more of the dye. Also, the enhancement of light scattering increases the efficiency with high adsorption of the dye. Powder size, crystalline phase, and shape of $TiO_2$ obtained by hydrothermal method have 15-20 nm, anatase and round. $TiO_2$ electrode has fabricated with the mixture of scattering $TiO_2$ particle with 0.4 ${\mu}m$ in nano-sized powder. Conversion efficiency of series of DSSCs was measured with volume fraction of scattering particle. Photovoltaic characteristics of DSSCs with 10% scattering particles are 3.51 mA for Jsc (short circuit current), 0.79 V for Voc(open circuit potential), filling factor 0.619 and 6.86% for efficiency. Jsc was improved by 11% and enhancement of efficiency by 0.77% compared with that of no scattering particles. The confinement of inserted light by light scattering particles has more increase of the injection of exiton(electron-hole pair) and decrease of moving path in electron. Efficiencies of DSSCs with more than 10% for scattering particles have reduced with increasing the pore in the $TiO_2$ electrode.

Performance Characteristics of Organic Electroluminescence Diode Using a Carbon Nanotube-Doped Hole Injection Layer (탄소 나노튜브가 도입된 정공 주입층에 의한 유기발광다이오드의 성능 특성 연구)

  • Kang, Hak-Su;Park, Dae-Won;Choe, Youngson
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.418-423
    • /
    • 2009
  • MWCNT(multi-wall carbon nanotube)-doped PEDOT:PSS(poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)), used as a HIL(hole injection layer) material in OLEDs(organic light emitting diodes), was spin-coated on to the ITO glass to form PEDOT:PSS-MWCNT nano composite thin film. Morphology and transparency characteristics of nano composite thin films with respect to the loading percent of MWCNT have been investigated using FT-IR, UV-Vis and SEM. Furthermore, ITO/PEDOT:PSS-MWCNT/NPD/$Alq_3$/Al devices were fabricated, and then J-V and L-V characteristics were investigated. Functional group-incorporated MWCNT was prepared by acid treatment and showed good dispersion property in PEDOT:PSS solution. PEDOT:PSS-MWCNT thin films possessed good transparency property. For multi-layered devices, it was shown that as the loading percent of MWCNT increased, the current density increased but the luminance dramatically decreased. It might be conclusively suggested that the enhanced charge mobility by MWCNT could increase the current density but the hole trapping property of MWCNT could dramatically decrease the hole mobility in the current devices.

Cytotoxicity of Hyaluronic Acid Membrane Cross-linked with Lactide (락타이드로 가교시킨 히아루론산 막의 세포독성)

  • Kim, Won-Jung;Kwon, Ji-Young;Cheong, Seong-Ihl;Kim, In-Seop
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.255-259
    • /
    • 2006
  • The biodegradable hyaluronic acid(HA) membranes cross-linked with lactide using the crosslinking agent, 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide(EDC) were prepared as a potential biocompatible material for tissue engineering. HA membranes having different mechanical properties were synthesised by varying degree of the mole ratio of lactide to HA, EDC concentration, and crosslinking temperature. HA membranes were degradable in water solution and the degradation became slower with the increasing mole ratio of lactide to HA. HA membranes were sterilized using ethylene oxide gas and extracted with cell culture medium for 24 h at $37^{\circ}C$ and 200 rpm. Cytotoxicity of the extract was tested using NIH/3T3 mouse embryo fibroblast as a model cell. Growth inhibition was not observed in the extracts of HA membranes with the mole ratios of lactide to HA, 5 or 10, and 10% EDC concentration, however 11% of growth inhibition was observed in the extract with the mole ratio of 13. Growth inhibition was not observed in the extracts of HA membranes prepared with 5% EDC or 10% EDC and the mole ratio of lactide to HA, 10, however 12% of growth inhibition was observed in the extract with 20% EDC. Cytotoxicity was not observed in the extracts of HA membranes prepared at varying crosslinking temperatures, $15^{\circ}C,\;25^{\circ}C,\;and\;28^{\circ}C$ with the mole ratio of lactide to HA, 10 and 10% EDC.

An Electrochemical Study on the Carbon Black Conductor Prepared by Plasma Pyrolysis of Methane (메탄 플라즈마 분해에 의해 제조된 카본블랙 도전재의 전기화학적 특성에 대한 연구)

  • Yoon, Se-Rah;Lee, Joong-Kee;Cho, Won-Ihl;Baek, Young-Soon;Ju, Jae-Beck;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.6-12
    • /
    • 2003
  • Plasma carbon black(PB) which prepared by plasma pyrolysis of methane was treated at 800, 1300 and $2100^{\circ}C$ under $2\times10^{-2}$ torr. Four different samples including raw PB were added to $LiCoO_2$, cathode active material of lithium secondary battery, to investigate effects of properties of plasma black as conductors on electrochemical characteristics. Based on our experimental results, PB conductors with low amount of surface functional groups and high electrical conductivity enhanced the cyclability and the initial discharge capacity. However, deterioration of rate capability and cyclability were observed (or the plasma black treated at $2100^{\circ}C$ For the plasma black conductor prepared from plasma pyrolysis, the effects of properties of carbon black on electrochemical characteristics were combined results of changes in electrical conductivity and structural properties such as agglomeration of plasma black. The conductivity of plasma black increased with treatment temperature, while dispersion of plasma black decreased. As a result, the high cyclability of cell was observed at $800^{\circ}C$ of heat treatment temperature.

Thermal Behavior of (Co0.5 Mn0.5)Fe2O4 for Hydrogen Generation by Thermochemical Cycle (열화학 사이클 H2 제조를 위한 (Co0.5 Mn0.5)Fe2O4의 열적 거동)

  • Shin, H.C.;Choi, S.C.;Kim, C.S.;Kim, J.W.;Joo, O.S.;Jung, K.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.143-150
    • /
    • 2002
  • The thermal behavior of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ prepared by a co-precipitation wasinvestigated for Hz generation by the thermochemical cycle. The reduction reaction of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ started from $480^{\circ}C$, and the weight loss was 1.6 wt% up to $1100^{\circ}C$. At this reaction, $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ was reduced by release of oxygen bonded with the $Fe^{3+}$ ion in the B site of ($CO_{0.5}$ $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$. In the $H_2O$ decomposition reaction, $H_2$ was generated by oxidationof reduced $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$. The crystal structure of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ for reduction reaction maintained spinel structure and the lattice constant of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ ($8.41\AA$) was enlarged to $8.45\AA$. But the lattice constant of $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ after $H_2O$ decomposition reaction did not change to $8.45\AA$. Then, $(Co_{0.5}\;Mn_{0.5})Fe_2O_4$ is excellent material in the thermochemical cyclic reaction due to release oxygen at low temperature for the reduction reaction and produce $H_2$ maintaining crystal structure for redox reaction.

The effects of Hydroxyapatite nano-coating implants on healing of surgically created circumferential gap in dogs

  • Chae, Gyung-Joon;Lim, Hyun-Chang;Choi, Jung-Yoo;Chung, Sung-Min;Lee, In-Seop;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.373-384
    • /
    • 2008
  • Purpose: The aim of this study is to compare the healing response of various Hydroxyapatite(HA) coated dental implants by Ion-Beam Assisted Deposition(IBAD) placed in the surgically created circumferential gap in dogs. Materials and methods: In four mongrel dogs, all mandibular premolars and the first molar were extracted. After an 8 weeks healing period, six submerged type implants were placed and the circumferential cylindrical 2mm coronal defects around the implants were made surgically with customized step drills. Groups were divided into six groups : anodized surface, anodized surface with 150nm HA and heat treatment, anodized surface with 300nm HA and heat treatment, anodized surface with 150nm HA and no heat treatment, and anodized surface with 150nm HA, heat treatment and bone graft, anodized surface with bone graft. The dogs were sacrificed following 12 weeks healing period. Specimens were analyzed histologically and histomorphometrically. Results: During the healing period, healing was uneventful and implants were well maintained. Anodized surface with HA coating and $430^{\circ}C$ heat treatment showed an improved regenerative characteristics. Most of the gaps were filled with newly regenerated bone. The implant surface was covered with bone layer as base for intensive bone formation and remodeling. In case that graft the alloplastic material to the gaps, most of the coronal gaps were filled with newly formed bone and remaining graft particles. The bone-implant contact and bone density parameters showed similar results with the histological findings. The bone graft group presented the best bone-implant contact value which had statistical significance. Conclusion: Within the scope of this study, nano-scale HA coated dental implants appeared to have significant effect on the development of new bone formation. And additional bone graft is an effective method in overcoming the gaps around the implants.

Electrochemical Characteristics of the Silicon Thin Films on Copper Foil Prepared by PECVD for the Negative Electrodes for Lithium ion Rechargeable Battery (PECVD법으로 구리 막 위에 증착된 실리콘 박막의 이차전지 음전극으로서의 전기화학적 특성)

  • Shim Heung-Taek;Jeon Bup-Ju;Byun Dongjin;Lee Joong Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.173-178
    • /
    • 2004
  • Silicon thin film were synthesized from silane and argon gas mixture directly on copper foil by rf PECVD and then lithium ion batteries were prepared from them employed as the negative electrodes without any further treatment. In the present study, two different kinds of silicon thin films, amorphous silicon and copper silicide were prepared by changing deposition temperature. Amorphous silicon film was prepared below $200^{\circ}C$, but copper silicide film with granular shape was formed by the reaction between silicon radical and diffused copper ions under elevating temperature above $400^{\circ}C$. The amorphous silicon film gives higher capacity than copper silicide, but the capacity decreases sharply with charge-discharge cycling. This is possibly due to severe volume changes. The cyclability is improved, however, by employing the copper silicide as a negative electrode. The copper silicide plays an important role as an active material of the electrode, which mitigates volume change cause by the existence of silicon and copper chemical bonding and provides low electrical resistance as well.

Development of Insulation Sheet Materials and Their Sound Characterization

  • Ni, Qing-Qing;Lu, Enjie;Kurahashi, Naoya;Kurashiki, Ken;Kimura, Teruo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.25-40
    • /
    • 2008
  • The research and development in soundproof materials for preventing noise have attracted great attention due to their social impact. Noise insulation materials are especially important in the field of soundproofing. Since the insulation ability of most materials follows a mass rule, the heavy weight materials like concrete, lead and steel board are mainly used in the current noise insulation materials. To overcome some weak points in these materials, fiber reinforced composite materials with lightweight and other high performance characteristics are now being used. In this paper, innovative insulation sheet materials with carbon and/or glass fabrics and nano-silica hybrid PU resin are developed. The parameters related to sound performance, such as materials and fabric texture in base fabric, hybrid method of resin, size of silica particle and so on, are investigated. At the same time, the wave analysis code (PZFlex) is used to simulate some of experimental results. As a result, it is found that both bundle density and fabric texture in the base fabrics play an important role on the soundproof performance. Compared with the effect of base fabrics, the transmission loss in sheet materials increased more than 10 dB even though the thickness of the sample was only about 0.7 mm. The results show different values of transmission loss factor when the diameters of silica particles in coating materials changed. It is understood that the effect of the soundproof performance is different due to the change of hybrid method and the size of silica particles. Fillers occupying appropriate positions and with optimum size may achieve a better effect in soundproof performance. The effect of the particle content on the soundproof performance is confirmed, but there is a limit for the addition of the fillers. The optimization of silica content for the improvement of the sound insulation effect is important. It is observed that nano-particles will have better effect on the high soundproof performance. The sound insulation effect has been understood through a comparison between the experimental and analytical results. It is confirmed that the time-domain finite wave analysis (PZFlex) is effective for the prediction and design of soundproof performance materials. Both experimental and analytical results indicate that the developed materials have advantages in lightweight, flexibility, other mechanical properties and excellent soundproof performance.