• Title/Summary/Keyword: Nano-material

Search Result 2,414, Processing Time 0.031 seconds

Small Thruster Development Based on Pulse Energy (펄스 에너지 기반의 소형 추력 장치 개발)

  • Choi, Soo-Jin;Gojani, Ardian B.;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.365-368
    • /
    • 2009
  • A new concept of a small thruster for altitude control of a micro/nano class satellite is developed, which utilizes the pulsed laser energy. As the laser-based thruster does not require burning of any fuel, it gives promise of small satellite design criteria, namely light weight and cost effectiveness. In this paper, we develop gel-type material for generating strong plasma plume for enhancing thrust for propulsion. Moreover, we quantify the level of thrust via the momentum coupling coefficient measured by the pendulum system. We discover that the driving force is significantly improved via the gel-typed propellant for laser ablation.

  • PDF

A Viscoelasitc Finite Element Analysis of Thermal Nanoimprint Lithography Process (열-나노임프린트 공정의 점탄성 유한요소해석)

  • Kim, Nam-Woong;Kim, Kug-Weon;Sin, Hyo-Chol
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Nanoimprint lithography (NIL) is an emerging technology enabling cost-effective and high-throughput nanofabrication. To successfully imprint a nano-sized pattern, the process conditions such as temperature, pressure, and time should be appropriately selected. This starts with a clear understanding of polymer material behavior during the NIL process. In this work, the squeezing of thin polymer films into nanocavities during the thermal NIL has been investigated based upon a two-dimensional viscoelastic finite element analysis in order to understand how the process conditions affect a pattern quality. The simulations have been performed within the viscoelastic plateau region and the stress relaxation effect has been taken into account.

  • PDF

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.

Performance of modified graphite as anode material for lithium-ion secondary battery

  • Zheng, Hua;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • Two different types of graphite, such as flake graphite (FG) and spherical graphite (SG), were used as anode materials for a lithium-ion secondary battery in order to investigate their electrochemical performance. The FG particles were prepared by pulverizing natural graphite with a planetary mill. The SG particles were treated by immersing them in acid solutions or mixing them with various carbon additives. With a longer milling time, the particle size of the FG decreased. Since smaller particles allow more exposure of the edge planes toward the electrolyte, it could be possible for the FG anodes with longer milling time to deliver high reversible capacity; however, their initial efficiency was found to have decreased. The initial efficiency of SG anodes with acid treatments was about 90%, showing an over 20% higher value than that of FG anodes. With acid treatment, the discharge rate capability and the initial efficiency improved slightly. The electrochemical properties of the SG anodes improved slightly with carbon additives such as acetylene black (AB), Super P, Ketjen black, and carbon nanotubes. Furthermore, the cyclability was much improved due to the effect of the conductive bridge made by carbon additives such as AB and Super P.

Effect of Ceramic Fibers and SiC Opacifiers on Thermal Conductivities of Fumed Silica-Based Thermal Insulation Media (탄화규소 불투명화재와 세라믹섬유가 Fumed 실리카 단열재의 열전도도에 미치는 영향)

  • Kwon, Young-Pil;Kwon, Hyuk-Chon;Park, Sung;Lee, Jae-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.747-750
    • /
    • 2007
  • The thermal conductivities of nano-sized fumed silica-based insulation media were investigated by varying a mean particle size of the silicon carbide opacifiers and ceramic fiber content. Opacifying effect of ceramic fiber and silicon carbide powders was discussed in terms of their content and the mean particle size of them. As the fiber contents increased from 10 wt% to 30 wt% in a material, its thermal conductivity at temperatures of about $620^{\circ}C$ decreased from 0.171 $Wm^{-1}K^{-1}$ to 0.121 $Wm^{-1}K^{-1}$. Meanwhile, the thermal conductivity at temperatures of about $625^{\circ}C$ decreased from 0.128 $Wm^{-1}K^{-1}$ to 0.092 $Wm^{-l}K^{-1}$ as the mean SiC particle size decreased from $31{\mu}m$ to $10{\mu}m$.

Improving the Capacity Retention of LiNi0.8Co0.2O2by ZrO2 Coating

  • Lee Sang-Myoung;Oh Si-Hyoung;Lee Byung-Jo;Cho Won-Il;Jang Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.6-9
    • /
    • 2006
  • The effect of $ZrO_2$-coating on the electrochemical properties of the cathode material $LiNi_{0.8}Co_{0.2}O_2$ was investigated using EPMA, TEM, and EIS. In particular, we facused on the distribution of the $ZrO_2$ on the particle surface to study the relation between electrochemical properties of the coated cathode and the distribution of the coating materials in the particle. Based on the results from the composition analysis and electrochemical tests, it was found that the coating layer consisted of nano-sized $ZrO_2$ particles attached non-uniformly on the particle surface and the $ZrO_2$ layer significantly improved the electrochemical properties of the cathode by suppressing the impedance growth at the interface between the electrodes and the electrolyte.

Precision Stage Using A Novel Contact-Free Planar Actuator Based on Combination of Electromagnetic forces (전자기력 조합에 기초한 평면 구동기를 이용한 자기 부상 방식 초정밀 스테이지)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1863-1872
    • /
    • 2001
  • In this Paper, we suggest the precision stage using a novel non-contact planar actuator that utilizes an interaction between an array type of air-core solenoids and permanent magnets. The former with axes arranged in the mutually orthogonal direction is fixed on the stator and the latter with the same polar direction is attached below the stage. The promising magnetic structure has little uncertainty such as hysteresis loss caused by ferromagnetic material, then it is simple to quantify the magnetic phenomenon. And all the magnetic forces are transmitted through narrow air-gap between the coil and the permanent magnet, therefore the structure can be highly compacted. Furthermore, the stage or plate can be perfectly isolated from the stator without any wire connection, leading to diminish the generating possibility of wear particles due to mechanical contact. Then. it is estimated that the proposed operating principle is very suitable for work requiring high accuracy and cleanness. or general-purpose nano stage. The main issues rebated to the plate driving are discussed here.

A Study on RGB LED Control and material analysis for transmit wireless optical information using 64#x0078;64 Matrix based indoor and outdoor LED signage (64x64형 옥내외 LED 전광판 사이니지에 접목 가능한 무선광통신용 RGB LED 제어 및 소재분석 연구)

  • Lee, Min-Woo;Lee, Beom-Hee;Cha, Jae-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.92-93
    • /
    • 2017
  • 최근 IT 및 사이니지 기술을 포함한 여러 기술의 발전 형태가 융복합적 기술의 방향으로 전환됨으로서, 기술 간 장벽이 허물어지고, 상호 연관성을 갖게 됨에 따라 사이니지 및 IT기술이 접목된 새로운 융복합 기술에 대한 연구가 지속적으로 이루어지고 있다. 특히, LED 광원의 일종인 사이니지를 이용하여 광 데이터를 전송할 수 있는 기술에 대한 연구가 학계, 연구소 및 관련 산업체 등에서 지속적으로 진행되고 있는 상황이다. 이에 본 논문에서는 LED 전광판 사이니지를 이용하여 무선광통신이 용이한 LED 소재에 대한 연구를 진행하였다. LED 전광판 사이니지를 이용한 무선광통신 기술은 LED 광원이 지닌 특성을 토대로 RF방식 대비 높은 주파수 대역과 고속의 데이터 전송이 가능하기 때문에 높은 잠재력과 파급력을 통하여 무선통신 분야에서의 새로운 통신 척도로 활용될 수 있을 것으로 예상된다.

  • PDF

Ablation of Cr Thin Film on Glass Using Ultrashort Pulse Laser (극초단펄스 레이저에 의한 크롬박막 미세가공)

  • 김재구;신보성;장원석;최지연;장정원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.620-623
    • /
    • 2003
  • The material processing by using ultrashort pulse laser, in recently, is actively applying into the micro machining and nano-machining technology since ultrashort pulse has so faster than the time which the electrons energy absorbing photon energy is transmitted to surrounding lattice-phonon that it has many advantages in point of machining. The micro machining of metallic thin film on the plain glass is widely used in the fields such as mask repairing for semiconductor, fabrication of photonic crystal, MEMS devices and data storage devices. Therefore, it is important to secure the machining technology of the sub-micron size. In this research, we set up the machining system by using ultrashort pulse laser and conduct on the Cr 200nm thin film ablation experiments of spot and line with the variables such as energy, pulse number, speed, and so on. And we observed the characteristics of surrounding heat-affected zone and by-products appeared in critical energy density and higher energy density through SEM, and also examined the machining features between in He gas atmosphere which make pulse change minimized by nonlinear effect and in the air. Finally, the pit size of 0.8${\mu}{\textrm}{m}$ diameter and the line width of 1${\mu}{\textrm}{m}$ could be obtained.

  • PDF

Micro-machining Characteristics using Focused Ion Beam (집속이온빔에 의한 미세가공 특성)

  • 이종항;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.636-639
    • /
    • 2003
  • It is difficult to machine below 10 micrometers by conventional machining methods, such as micro-EDM. However, ultra micro machining using focused ion beam(FIB) is able to machine to 50 nanometers. In addition, 3 dimensional structures can be made by a combination of FIB and CVD to the level of 10 nanometers. Die & moulds techniques are better than one-to-one machining techniques in the mass production of ultra size structures, in regards to production costs. In this case, the machining precision of die & moulds affects produced parts. Also, it is advantageous to machine die & moulds to the 10 micrometer level by FIB technique rather than other techniques. In this paper, the grooving characteristics for die & mould materials by FIB were carried out experimentally in order to compare the machining characteristics of FIB with conventional machining methods. The results showed that the machining parameters and the scanning path of FIB affects the precision. The machined width and depth of the groove varied depending on the required depth due to the redeposition of the sputtered ion material accumulating on both the bottom and the side of the wall.

  • PDF