• 제목/요약/키워드: Nano-material

검색결과 2,423건 처리시간 0.028초

BaTiO3 PTC 써미스터의 미세구조 및 전기적 특성에 대한 SiO2 영향 (The Effect of SiO2 on the Microstructure and Electrical Properties of BaTiO3 PTC Thermistor)

  • 전명표
    • 한국전기전자재료학회논문지
    • /
    • 제26권1호
    • /
    • pp.22-26
    • /
    • 2013
  • PTCR ceramics of $(Ba_{0.998}Sm_{0.002})TiO_3+0.001MnCO_3+xSiO_2$ (x=1, 2, 3, 4, 5, 6 mol%) were fabricated by solid state method. Disk samples of diameter 5 mm and thickness about 1mm were sintered at $1,290^{\circ}C$ for 2 h in reduced atmosphere of $5%H_2-95%N_2$ followed by re-oxidation at $600^{\circ}C$ for 30 min. in $20%O_2-80%N_2$.and their microstructures and electrical properties were investigated with SEM and Multimeter. The color of sintered samples was strongly dependent on $SiO_2$ content showing that the color of samples with $SiO_2$ of 1~2 mol% was gray but that of samples with $SiO_2$ of 4~6 mol% was changed from gray to blue, which seems to be related with the reduction of samples due to the oxygen vacancies created during the sintering in reduced atmosphere. $SiO_2$ content had a great influence on the microstructure and the electrical properties. With increasing $SiO_2$ content, the grain size of samples increased and the resistivity as well as the resistivity jump ($R_{285}/R_{min}$) decreased, which is considered to be attributed to the resistivity change at grain interior and grain boundary due to the fast mass transfer through $SiO_2$ liquide phase during the sintering. Samples with 2 mol% $SiO_2$ has the resistivity of $202{\Omega}cm$ and the resistivity jump of 3.28. It is expected that $SiO_2$ doped $BaTiO_3$ based PTC ceramics can be used for multilayered PTC thermistor due to the resistance to the sintering in reduced atmosphere.

마이크로 컨텍 프린팅 기법을 이용한 결정질 실리콘 태양전지의 전면 텍스쳐링 (Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing)

  • 홍지화;한윤수
    • 한국전기전자재료학회논문지
    • /
    • 제26권11호
    • /
    • pp.841-845
    • /
    • 2013
  • We give a textured front on silicon wafer for high-efficiency solar cells by using micro contact printing method which uses PDMS (polydimethylsiloxane) silicon rubber as a stamp and SAM (self assembled monolayer)s as an ink. A random pyramidal texturing have been widely used for a front-surface texturing in low cost manufacturing line although the cell with random pyramids on front surface shows relatively low efficiency than the cell with inverted pyramids patterned by normal optical lithography. In the past two decades, the micro contact printing has been intensively studied in nano technology field for high resolution patterns on silicon wafer. However, this promising printing technique has surprisingly never applied so far to silicon based solar cell industry despite their simplicity of process and attractive aspects in terms of cost competitiveness. We employ a MHA (16-mercaptohexadecanoic acid) as an ink for Au deposited $SiO_2/Si$ substrate. The $SiO_2$ pattern which is same as the pattern printed by SAM ink on Au surface and later acts as a hard resist for anisotropic silicon etching was made by HF solution, and then inverted pyramidal pattern is formed after anisotropic wet etching. We compare three textured surface with different morphology (random texture, random pyramids and inverted pyramids) and then different geometry of inverted pyramid arrays in terms of reflectivity.

A Study on the Thermal and Chemical Properties of Carbon Nanotube Reinforced Nanocomposite in Power Cables

  • Yang, Sang-Hyun;Jang, Hyeok-Jin;Park, Noh-Joon;Park, Dae-Hee;Yang, Hoon;Bang, Jeong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권6호
    • /
    • pp.217-221
    • /
    • 2009
  • The use of the carbon nanotube (CNT) is superior to the general powder state materials in their thermal and chemical properties. Because its ratio of diameter to length (aspect ratio) is very large, it is known to be a type of ideal nano-reinforcement material. Based on this advantage, the existing carbon black of the semiconductive shield materials used in power cables can acquire excellent properties by the use of a small amount of CNTs. Therefore, we fabricated specimens using a solution mixing method. We investigated the thermal properties of the CNT, such as its storage modulus, loss modulus, and its tan delta using a dynamic mechanical analysis 2980. We found that a high thermal resistance level is demonstrated by using a small amount of CNTs. We also investigated the chemical properties of the CNT, such as the oxidation reaction by using Fourier transform infrared spectroscopy (FT-IR) made by Travel IR. In the case of the FT-IR tests, we searched for some degree of oxidation by detecting the carboxyl group (C=O). The results confirm a tendency for a high cross-linking density in a new network in which the CNTs situated between the carbon black constituent molecules show a bond using similar constructive properties.

자기조립법을 이용한 고에너지물질의 표면개질 연구 (Surface Modification of High Energetic Materials by Molecular Self-assembly)

  • 김자영;정원복;신채호;김진석;이근득;이기봉
    • 한국추진공학회지
    • /
    • 제20권2호
    • /
    • pp.18-23
    • /
    • 2016
  • 유기 분자의 자기조립 다분자막은 기질의 표면에서 전자기적인 상호작용을 통해 자발적으로 형성된다. 본 연구에서는 이 기술을 응용하여 고에너지물질의 안전성과 취급용이성이 향상됨을 입증하였다. 최근 다양한 연구에서 고에너지물질 결정 내부의 결함은 물질의 안전성을 저하시키는 요인이므로, 결정 입자의 크기를 감소시키는 연구가 중요시되고 있다. 이에 따라, 결정화 방법을 통해 제조된 나노 수준의 고에너지물질을 사용하였으며, 자기조립 다분자막 기술을 응용하여 물질의 안전성을 향상시켰다. 입도/표면전하/마찰감도/정전기 전하 등을 측정하여 표면개질 여부를 확인하였다.

나노잉크 및 반응성잉크를 사용한 DTP 견직물의 친환경 불소계 발수제에 의한 가공효과 연구 (Effect of Treatment Conditions of Eco-friendly Fluorinated Water-repellent Agent and Design Applications: Silk Fabrics with DTP Finishing)

  • 최경미;김종준
    • 패션비즈니스
    • /
    • 제18권5호
    • /
    • pp.159-170
    • /
    • 2014
  • Recent concerns about the PFOA(perfluorooctanoic acid), have been increasing, which is generally applied in the water-repellent finishing process of textile products. It has been proven through animal testing to be harmful to humans, as possible carcinogens and neuro-toxic material. Thus U. S. Environmental Agency has gone as far as requiring the material to be eliminated in its entirety by 2015. As a viable alternative to this water-repellent finishing agent, the development of C6 product is gaining its popularity. The effects of PFOA finishing on the silk fabrics were examined, and we reviewed parameters of the needed process for optimizing appearance and functionality of silk fabrics treated with eco-friendly water-repellent finishing agent. Cross-linking agent affected the most on black color of reactive ink, among the physical properties. The contact angle reading was the highest in $8g/{\ell}$ of concentration for all fabrics. All the fabric specimens, subjected to the DTP and water repellent finishing, exhibited higher stiffness, where rayon specimen showed the highest, compared to the untreated specimens. The results may provide basic information leading to the development of value-added silk fabrics with water-repellency without excessive deterioration of the delicate appearance and inherent soft touch.

아연-공기전지용 페롭스카이트 산화물 촉매의 산소환원반응 특성 (Characterization of LaCoO3 Perovskite Catalyst for Oxygen Reduction Reaction in Zn-air Rechargeable Batteries)

  • 선호정;조명연;안정철;엄승욱;박경세;심중표
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.436-442
    • /
    • 2014
  • $LaCoO_3$ powders synthesized by Pechini process were pulverized by planetary ball-milling to decrease particle size and characterized as a catalyst in alkaline solution for oxygen reduction and evolution reaction (ORR & OER). The changes of physical properties, such as particle size distribution, surface area and electric conductivity, were analyzed as a function of ball-milling time. Also, the variations of the crystal structure and surface morphology of ball-milled powders were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically catalytic activities of the intrinsic $LaCoO_3$ powders decreased with increasing ball-milling time, but their electrochemical performance as an electrode improved by the increase of the surface area of the powder.

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

365 nm 파장대역 고투과율 실리콘 수지 TIR 렌즈 및 고지향성 노광기 광원모듈 제작 (Fabrication of 365 nm Wavelength High Transmittance Silicone Resin TIR Lens and High Directivity Light Source Module for Exposure System)

  • 성준호;유순재;;정미숙
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.267-271
    • /
    • 2018
  • A high directivity TIR (total internal reflection) lens in the UV-A region was designed using a silicone resin, and a UV light source module with a maximum irradiation density of $150mW/cm^2$ was fabricated. The beam angle of the TIR lens was designed to be $8.04^{\circ}$ and the maximum diameter of the TIR lens was Ø13.5. A silicone resin having a UV transmittance of 93% and a refractive index of 1.4 at a wavelength of 365 nm was used, and the lens was manufactured using an aluminum mold, from which silicone could be easily released. The module was fabricated in a metal printed circuit board of COB (chip on board) type using a $0.75{\times}0.75mm^2$ UV chip. A jig was used to adjust the focal length between lens and chip and to fix the position of the lens. The optical characteristics such as illumination distributions of the lens and module were designed using 'LightTools' optical simulation software. The heat dissipation system was designed to use a forced-air cooling method using a heat-sink and fan.

순환골재의 성능향상을 위한 나노실리카졸의 코팅에 관한 연구 (A Study on the Nano Silica-Sol Coating for Improving Performance of Recycled Aggregate)

  • 김성수;이정배;고지수;김일곤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권4호
    • /
    • pp.84-90
    • /
    • 2013
  • 본 논문은 기존 순환골재 생산공장에서 새로운 설비투자나 복잡한 처리공정을 거치지 않고 비교적 용이하게 순환골재의 품질을 개선할 수 있는 효과적인 코팅처리방법을 도출하고, 도출한 코팅처리방법으로 순환골재를 코팅처리하여 그 품질개선 효과를 확인하였다. 연구목적을 달성하기 위하여 순환골재를 코팅하기 위하여 코팅처리용액중 하나인 실리케이트 용액을 경제성 있게 알맞은 농도로 희석하여 사용하였으며, 골재의 코팅방법을 달리하여 12가지 종류의 코팅골재에 대한 물성평가를 실시하였다. 또한 가장 좋은 물성을 나타낸 코팅골재를 사용하여 콘크리트를 제조하였다. 이상의 실험결과 골재를 코팅처리용액에 함침 및 건조를 반복하였을 때 골재의 품질이 가장 우수하게 나타났고, 다른 코팅방법 또한 물성이 코팅처리 전 골재보다는 향상되는 것으로 나타났으나, KS 기준에는 미치는 못하는 결과를 나타내었다. 또한, 가장 좋은 물성을 나타낸 골재를 가지고 콘크리트를 제조한 결과 설계기준강도를 만족시키는 압축강도가 측정되었으며, 설계기준강도 24MPa 이하의 도로시설물을 축조할 때 활용이 가능할 것으로 판단된다.

$TiO_2$ 두께에 따른 염료감응형 태양전지의 효율 변화 (The Effect of $TiO_2$ Thickness on the Performance of Dye-Sensitized Solar Cells)

  • 김대현;박미주;이성욱;최원석;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.147-148
    • /
    • 2007
  • Dye-sensitized solar cell using conversion of solar energy to electrical energy appeared that which solves a environmental matter. The dye-sensitized solar cell uses nano-crystalline oxide semiconductor for absorbing dye. The $TiO_2$ is used most plentifully. The efficiency of the dye-sensitized solar cell changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. In this paper, we report The effect of titania$(TiO_2)$ thickness on the performance of dye-sensitized solar cells. Using doctor blade method, It produced the thickness of the $TiO_2$ with $7\;{\mu}m,\;10\;{\mu}m,\;13\;{\mu}m$. The efficiency was the best from $10{\mu}m$. It had relatively low efficiency on the thickness from $7\;{\mu}m\;to\;13\;{\mu}m$. The reason why it presents low efficiency on $7\;{\mu}m$ thickness is that excited electrons can not be delivered enough due to thin thickness of $7\;{\mu}m\;TiO_2$. And The reason why it presents low efficiency on $13\;{\mu}m$ thickness is that thick $13\;{\mu}m\;TiO_2$ can not penetrate the sunlight enough.

  • PDF