• Title/Summary/Keyword: Nano-material

Search Result 2,414, Processing Time 0.024 seconds

Electrical Property of Electrospun PCL/MWCNTs Nanofiber with Additive Silver Thin Film (은 박막이 첨가된 전기방사법으로 제작한 PCL/MWCNTs 나노섬유의 전기적 특성)

  • Kim, Jin Un;Kim, Kyong Min;Park, Kyoung Wan;Sok, Jung Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.238-243
    • /
    • 2018
  • A nanofiber was fabricated with carbon nanotubes for transparent electrodes. It was prepared with a composite solution of bio-molecules polycaprolactone (PCL) and multiwalled carbon nanotubes (MWCNTs) by electrospinning on a glass substrate, following which its electrical characteristics were investigated. The content of MWCNTs was varied during electrospinning, while that of PCL was fixed. Further, a nanometer-thick thin film of silver was deposited on the nanofiber layer using a thermal evaporator to improve the electrical characteristics; the sheet resistance significantly reduced after this deposition. The results showed that this carbon nanotube nanofiber has potential applications in biotechnology and as a flexible transparent display material.

Manufacturing Technology of Thin Foil Tensile Specimen Using Cold Isostatic Press and Precision Mechanical Property Measurement Technology (냉간 등방압 성형기를 이용한 미세박판 인장시험시편 가공기술 및 정밀 기계적 물성 측정기술)

  • Lee H. J.;Park H. J.;Lee N. K.;Kim S. S.;Lee H. W.;Hwang J. H.;Park J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.245-248
    • /
    • 2005
  • This paper is concerned with manufacturing technology of thin foil tensile specimen using CIP(Cold Isostatic Press) and measurement of precision mechanical property. This thin foil tensile specimen manufacturing technology is a method that can make a metal thin foil specimen for micro tensile testing. We can get a burr free micro metallic thin foil specimen using this technology. For testing mechanical property of this micro thin foil, we use a nano scale material testing machine that was developed by KITECH. In this paper, micro tensile specimens of nickel and copper thin foil are fabricated with CIP and precision mechanical properties of these materials could be measured. We will expect that precision mechanical property of micro/nano material and component. Micro and Nano mechanical property can be measured using this technology and mechanical property data base of micro/nano material and component can be constructed.

  • PDF

Effect of Nano-Sized Silver Powders in CNT Paste on Field Emission Characteristics of Carbon Nanotube Cathode (탄소나노튜브 캐소드의 전계방출 특성에 미치는 CNT 페이스트용 나노입자 은분말의 영향)

  • An, Young-Je;Lee, Ji-Eon;Shin, Heon-Cheol;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver (Ag) powders as a bonding material between the CNTs and cathode electrodes. The effects of the powder size on the sintering behavior, the current density and emission image for CNT cathodes were investigated. As the diameter of the Ag powders decreases to 10 nm, the sintering temperature of the CNT cathode was lowered primarily due to the higher specific surface area of the Ag powders. In this study, it was demonstrated that nano-sized Ag powders can be feasibly used as a bonding material for a screen-printed CNT cathode, yielding a high current density and a uniform emission image.

Mechanical Properties Evaluation of Natural and Synthetic Rubber (천연 및 합성고무의 기계적 물성 평가)

  • Park, H.S.;Woo, C.S.
    • Elastomers and Composites
    • /
    • v.42 no.1
    • /
    • pp.32-46
    • /
    • 2007
  • Mechanical properties of rubber material are very important in design procedure to assure the safety and reliability of the rubber components. In this paper, the material test and accelerated heat aging test were carried out. In order to investigate the effects of heat-aging on the material properties, hardness, elongation, stress-strain curves and dynamic characteristics were obtained from various test conditions. Also, rubber material coefficients were determined by both the uniaxical and equi-biaxial tensile tests.

Nano Patterning Functional Polymers Using Nano-imprint Technique

  • Gwon, Hyeon-Geun;Lee, Gyu-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.430.2-430.2
    • /
    • 2014
  • Previous studies to enhance optical properties of opto-electronic devices involve patterning of inorganic materials. Patterning of inorganic material usually encompasses vacuum process that hinders productivity and increases cost. In this research, we successfully formed nano patterns with polymer matrix and fabricated photonic crystals. This process is anticipated to increase the performance of opto-electronic devices without any vacuum process. Moreover, nano imprint technology reduces cost and bolsters productivity.

  • PDF

Spectroscopic and Mechanical Properties of Nano Silica Rubber Composite Material

  • Lee, Jung Kyu;Park, Juyun;Kang, Yong-Cheol;Koh, Sung Wi
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.62-66
    • /
    • 2016
  • To manipulate the mechanical properties of acrylonitrile butadiene rubber (NBR), addition of nano-sized silica on rubber was performed and nano-silica NBR composite (NSR) materials were fabricated by press molding. The effect of volume fraction of silica in the NSR on the spectroscopic and mechanical properties has been studied.

A Study on the Durability Complement of Lightweight Photovoltaic Module (경량화 태양광 모듈의 내구성 보완에 관한 연구)

  • Jeong, Taewung;Park, Min-Joon;Kim, Hanjun;Song, Jinho;Moon, Daehan;Hong, Kuen Kee;Jeong, Chaehwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.110-114
    • /
    • 2021
  • In this study, we fabricated light-weight solar module for various applications such as building integrated photovoltaics (BIPV), vehicles, trains, etc. Ethylene tetra fluoro ethylene (ETFE) film was applied as a material to replace the cover glass, which occupies more than 65% of the weight of the PV module. Glass fiber reinforced plastic (GRP) was applied to the ones with a low durability by replacing the cover glass to ETFE. Moreover, to achieve a high solar power conversion in this study, we applied a shingled design to weight reduced solar modules. The shingled module with GRP shows 183.7 W of solar-to-power conversion, and the output reduction rate after weight load test was 1.14%.

The Study on Properties of AAO(Anodic Aluminum Oxide) Structures with Hole Effect (Hole effect를 고려한 AAO(Anodic Aluminum Oxide) 구조물의 물성치에 대한 연구)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.186-193
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometer-scale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective methods to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.