• 제목/요약/키워드: Nano-ferrites

검색결과 32건 처리시간 0.021초

Crystallographic and Magnetic Properties of Nano-sized Nickel Substituted Cobalt Ferrites Synthesized by the Sol-gel Method

  • Choi, Won-Ok;Lee, Jae-Gwang;Kang, Byung-Sub;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.59-63
    • /
    • 2014
  • Nano-sized nickel substituted cobalt ferrite powders, $Ni_xCo_{1-x}Fe_2O_4$ ($0.0{\leq}x{\leq}1.0$), were fabricated by the sol-gel method, and their crystallographic and magnetic properties were studied. All the ferrite powders showed a single spinel structure, and behaved ferrimagnetically. When the nickel substitution was increased, the lattice constants and the sizes of particles of the ferrite powders decreased. The M$\ddot{o}$ssbauer absorption spectra of $Ni_xCo_{1-x}Fe_2O_4$ ferrite powders could be fitted with two six-line subspectra, which were assigned to a tetrahedral A-site and octahedral B-sites of a typical spinel crystal structure. The increase in values of the magnetic hyperfine fields indicated that the superexchange interaction was stronger, with the increased nickel concentration in $Ni_xCo_{1-x}Fe_2O_4$. This could be explained using the cation distribution, which can be written as, $(Co_{0.28-0.28x}Fe_{0.72+0.28x})[Ni_xCo_{0.72-0.72x}Fe_{1.28-0.28x}]O_4$. The two values of the saturation magnetization and the coercivity decreased, as the rate of nickel substitution was increased. These decreases could be explained using the cation distribution, the magnetic moment, and the magneto crystalline anisotropy constant of the substituted ions.

고온 자전 연소합성법과 기계적 미분에 의한 준나노 크기의 Ba-Zn Ferrite 분말의 제조 (Preparation of Quasi-nano-sized of Ba-Zn Ferrites Powders by Self-Propagating High Temperature Synthesis and Mechanical Milling)

  • 최경숙;이종재;김혁돈;최용;이상헌
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.625-628
    • /
    • 2008
  • Ba-Zn ferrite powders for electromagnetic insulator were synthesized by self-propagating high-temperature synthesis(SHS) with a reaction of $xBaO_2+(1-x)ZnO+0.5Fe_2O_3+Fe{\rightarrow}Ba_xZn_{1-x}Fe_2O_4$. In this study, phase indentification of SHS products was carried out by using x-ray diffractometry and quasi-nano sized Ba-Zn powders were prepared by a pulverizing process. SHS mechanism was studied by thermodynamical analysis about oxidation reaction among $BaO_2,\;ZnO,\;Fe_2O_3$, and Fe. As oxygen pressure increases from 0.25 MPa to 1.0 MPa, the SHS reactions occur well and make clearly the SHS products. X-ray analysis shows that final SHS products formed with the ratio of $BaO_2/ZnO$ of 0.25, 1.0 and 4.0, are mainly $Ba_xZn_{1-x}Fe_2O_4$. Based on thermodynamical evaluation, the heat of formation increases in the order of $ZnFe_2O_4,\;BaFe_2O_4$, and $Ba_xZn_{1-x}Fe_2O_4$. This supports that $Ba_xZn_{1-x}Fe_2O_4$ phase is predominately formed during SHS reaction. The SHS reactions to form $Ba_xZn_{1-x}Fe_2O_4$ depends on oxygen partial pressure, and the heat of formation during the SHS reaction. The SHS reactions tends to occur well with increasing the oxygen partial pressure and BaO2/ZnO ratio in the reactants This means that the SHS reaction for the formation of Ba-Zn ferrite includes the reduction of BaO2/ZnO and the oxidation of Fe. $Ba_xZn_{1-x}Fe_2O_4$ powders after pulverizing is agglomeratedwith a size of about $50{\mu}m$, in which quasi-nano sized particles with about 300nm are present.

밀 스케일을 사용한 Sr-페라이트의 특성에 미치는 산화제의 영향 (Effects of Oxidant on the Properties of Sr-ferrites Using Mill Scale)

  • 조태식;최승덕
    • 한국전기전자재료학회논문지
    • /
    • 제24권2호
    • /
    • pp.131-135
    • /
    • 2011
  • We have been studied the effects of oxidant on the properties of Sr-ferrite magnets using mill scale for motor. The small-added (0.5 wt%) $NaNO_3$ oxidant improved significantly the degree of oxidation and the grindability of mill scale, and then highly enhanced the magnetic properties of anisotropic Sr-ferrite sintered magnets; such as the remanent flux density from 3.55 to 3.80 kG, the intrinsic coercivity from 2.75 to 3.22 kOe, and the maximum energy product from 2.90 to 3.45 MGOe.

Mossbauer Study of nano-sized (Li_{0.5x}Fe_{0.5x}Zn_{1-x})Fe_2O_4$ particles

  • J. C. Sur;Kim, T. S.;T. Y. Ha;Lee, J. K.;S. H. Gee;Y. K. Hong;Park, M. H.;D. W. Erickson;P. J. Lamb
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.92-93
    • /
    • 2002
  • The substituted lithium ferrites combine useful ferromagnetic properties with high Curie temperature ranging from 55$0^{\circ}C$ to 85$0^{\circ}C$, [1] high saturation magnetization, [2] and low microwave dielectric loss.[3] Saturation magnetization of (Z $n_{1-x}$ F $e_{x}$)A[L $i_{0.5x}$F $e_{ 2-0.5x}$]$_{B}$ $O_4$ increased with zinc concentration, followed by a decrease at x = 0.7.[4] This is attributed to a dilution of the A-site with zinc which initially causes an increase in saturation magnetization due to the dominance of the B-site. (omitted)d))d)d))

  • PDF

공침법으로 제조한 Ni-Cu-Zn Ferrite의 Ni 첨가량과 온도에 따른 주파수 및 물리적 특성 연구 (A Study on Frequency and the Physical Properties of Ni-Cu-Zn Ferrites with the Variation of Ni Addition and Temperature Prepared by Co-Precipitation Method)

  • 김문석;고재귀
    • 한국자기학회지
    • /
    • 제15권5호
    • /
    • pp.282-286
    • /
    • 2005
  • 공침법으로 제조한 Ni-Cu-Zn ferrite를 사용하여 전파흡수체로 사용할 저온소결용 ferrite를 연구하였다. Ni 첨가량에 따른 조성비 및 가소온도와 소결온도 변화를 시켜 전파흡수특성 및 물리적 특성을 고찰하였다. XRD pattern을 통하여 spinel구조를 가짐을 확인하였고, 공침법으로 제조된 Ni-Cu-Zn ferrite 미분말이 나노입자 크기를 보였다 소결온도가 $1100^{\circ}C$이고 Ni 함량이 많을 수록 투자율이 낮고 손실계수도 높게 측정되어 흡수 능력도 좋아짐을 알 수 있고, MHz 영역에서 사용할 수 있다고 사료된다. 그리고 소결온도 $1100^{\circ}C$이고 $(Ni_{0.7}Cu_{0.2}Zn_{0.1}O)_{1.02}(Fe_{2}O_3)_{0.98}$ 조성일 때가 가장 손실이 크므로 전파흡수체로 사용할 조성임을 확인 할 수 있었다.

Effect of Sintering Temperature on the Micro Strain and Magnetic Properties of Ni-Zn Nanoferrites

  • Venkatesh, D.;Siva Ram Prasad, M.;Rajesh Babu, B.;Ramesh, K.V.;Trinath, K.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.229-240
    • /
    • 2015
  • In this study, nanocrystalline ferrite powders with the composition $Ni_{0.5}Zn_{0.5}Fe_2O_4$ were prepared by the autocombustion method. The obtained powders were sintered at $800^{\circ}C$, $900^{\circ}C$ and $1,000^{\circ}C$ for 4 h in air atmosphere. The as-prepared and the sintered powders were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and magnetization studies. An increase in the crystallite size and a slight decrease in the lattice constant with sintering temperature were observed, whereas microstrain was observed to be negative for all the samples. Two significant absorption bands in the wave number range of the $400cm^{-1}$ to $600cm^{-1}$ have been observed in the FT-IR spectra for all samples which is the distinctive feature of the spinel ferrites. The force constants were found to vary with sintering temperature, suggesting a cation redistribution and modification in the unit cell of the spinel. The M-H loops indicate smaller coercivity, which is the typical nature of the soft ferrites. The observed variation in the saturation magnetization and coercivity with sintering temperature has been attributed to the role of surface, inhomogeneous cation distribution, and increase in the crystallite size.

Effects of Ga Substitution on Crystallographic and Magnetic Properties of Co Ferrites

  • Chae, Kwang Pyo;Choi, Won-Ok;Kang, Byung-Sub;Lee, Young Bae
    • Journal of Magnetics
    • /
    • 제20권1호
    • /
    • pp.26-30
    • /
    • 2015
  • The crystallographic and magnetic properties of gallium-substituted cobalt ferrite ($CoGa_xFe_{2-x}O_4$) were investigated. The new material was synthesized using conventional ceramic methods, with gallium substituted for ferrite in the range of x = 0.0 to 1.0, in steps of 0.2. X-ray diffraction and M$\ddot{o}$ssbauer spectroscopy were used to confirm the presence of crystallized particles in the $CoGa_xFe_{2-x}O_4$ ferrite powders. All of the samples exhibited a single phase with a spinel structure, and the lattice parameters decreased as the gallium content increased. The particle size of the samples also decreased as gallium increased. For $x{\leq}0.4$, the M$\ddot{o}$ssbauer spectra of $CoGa_xFe_{2-x}O_4$ could be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites. However, for $x{\geq}0.6$, the M$\ddot{o}$ssbauer spectra could be fitted with two Zeeman sextets and one doublet. The variation in the M$\ddot{o}$ssbauer parameters and the absorption area ratio indicated a cation distribution of $(Co_{0.2-0.2x}Ga_xFe_{0.8-0.6x})[Co_{0.8+0.2x}Fe_{1.2-0.4x}]O_4$, and the magnetic behavior of the samples suggested that the increase in gallium content led to a decrease in the saturation magnetization and in the coercivity.

Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Jung, Ok-Sang;Cho, Chae-Ryong;Jeong, Euh-Duck;Ha, Myoung-Gyu;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1738-1742
    • /
    • 2009
  • Nanocrystalline Zn$Fe_2O_4$ oxide-semiconductor with spinel structure was synthesized by the polymerized complex (PC) method and investigated for its photocatalytic and photoelectric properties. The observation of a highly pure phase and a lower crystallization temperature in Zn$Fe_2O_4$ made by PC method is in total contrast to that was observed in Zn$Fe_2O_4$ prepared by the conventional solid-state reaction (SSR) method. The band gap of the nanocrystalline Zn$Fe_2O_4$ determined by UV-DRS was 1.90 eV (653 nm). The photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method as investigated by the photo-decomposition of isopropyl alcohol (IPA) under visible light (${\geq}$ 420 nm) was much higher than that of the Zn$Fe_2O_4$ prepared by SSR as well as Ti$O_{2-x}N_x$. High photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method was mainly due to its surface area, crystallinity and the dispersity of platinum metal over Zn$Fe_2O_4$.

두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조 (Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure)

  • 유리;김유진;피재환;김경자
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.