• Title/Summary/Keyword: Nano-crystal

Search Result 635, Processing Time 0.044 seconds

Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines

  • Nookala, Supraja;Tollamadugu, Naga Venkata Krishna Vara Prasad;Thimmavajjula, Giridhara Krishna;Ernest, David
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.97-109
    • /
    • 2015
  • Citrate ion is a commonly used reductant in metal colloid synthesis, undergoes strong surface interaction with silver nanocrystallites. The slow crystal growth observed as a result of the interaction between the silver surface and the citrate ion makes this reduction process unique compared to other chemical and radiolytic synthetic methods. The antimicrobial effects of silver (Ag) ion or salts are well known, but the effects of citrate coated Ag nanoparticles (CAgNPs) are scant. Herein, we have isolated biofilm causative bacteria and fungi from drinking water PVC pipe lines. Stable CAgNPs were prepared and the formation of CAgNPs was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance of CAgNPs at 430 nm. Fourier transform infrared spectroscopic analysis revealed C=O and O-H bending vibrations due to organic capping of silver responsible for the reduction and stabilization of the CAgNPs. X-ray diffraction micrograph indicated the face centered cubic structure of the formed CAgNPs, and morphological studies including size (average size 50 nm) were carried out using transmission electron microscopy. The hydrodynamic diameter (60.7 nm) and zeta potential (-27.6 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of CAgNPs was evaluated (in vitro) against the isolated fungi, Gram-negative and Gram-positive bacteria using disc diffusion method and results revealed that CAgNPs with 170ppm concentration are having significant antimicrobial effects against an array of microbes tested.

A Study for Preparation of Nano Ethosome Loaded with Resveratrol (레스베라트롤을 함유한 나노 에토좀 제조에 관한 연구)

  • Seo, Dong Hoan;Yoon, Jong Hyuk;Kim, Youn Joon;Byun, Sang Yo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • Resveratrol is a natural polyphenol. It protects skin from skin injury, ultraviolet radiation and pathogenic attack. This study is to find the optimum condition for the preparation of ethosome loading amount of resveratrol in ethosome. Ethosomes were prepared by modified hydrated liquid crystal method. Investigation of factors affecting the entrapment efficiency and particle size of ethosomes was carried out. The particle size of ethosome were measured by particle analyzer. The loading efficiency of resveratrol in ethosome was measured by HPLC. The particle sizes were 111.2 ~ 112.8 nm and the loading efficiency of resveratrol was 81.25 ~ 88.75%. The optimum conditions for the preparation of ethosome was obtained from of lecithin : resveratrol : cholesterol : ethanol at a weight ratio of 2.0 : 0.08 : 0.05 : 20.0.

Characterization of LaCoO3 Perovskite Catalyst for Oxygen Reduction Reaction in Zn-air Rechargeable Batteries (아연-공기전지용 페롭스카이트 산화물 촉매의 산소환원반응 특성)

  • Sun, Ho-Jung;Cho, Myung-Yeon;An, Jung-Chul;Eom, Seungwook;Park, Gyungse;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • $LaCoO_3$ powders synthesized by Pechini process were pulverized by planetary ball-milling to decrease particle size and characterized as a catalyst in alkaline solution for oxygen reduction and evolution reaction (ORR & OER). The changes of physical properties, such as particle size distribution, surface area and electric conductivity, were analyzed as a function of ball-milling time. Also, the variations of the crystal structure and surface morphology of ball-milled powders were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically catalytic activities of the intrinsic $LaCoO_3$ powders decreased with increasing ball-milling time, but their electrochemical performance as an electrode improved by the increase of the surface area of the powder.

Manganese Doped LiFePO4 as a Cathode for High Energy Density Lithium Batteries (고에너지밀도 리튬전지를 위한 망간이 첨가된 LiFePO4 양극재료)

  • Kim, Dul-Sun;Kim, Jae-Kwang;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Porous $LiMn_{0.6}Fe_{0.4}PO_4$ (LMFP) was synthesized by a sol-gel process. Uniform dispersion of the conductive carbon source throughout LMFP with uniform carbon coating was achieved by heating a stoichiometric mixture of raw materials at $600^{\circ}C$ for 10 h. The crystal structure of LMFP was investigated by Rietveld refinement. The surface structure and pore properties were investigated by SEM, TEM and BET. The LMFP so obtained has a high specific surface area with a uniform, porous, and web-like nano-sized carbon layer at the surface. The initial discharge capacity and energy density were 152 mAh/g and 570 Wh/kg, respectively, at 0.1 C current density, and showed stable cycle performance. The combined effect of high porosity and uniform carbon coating leads to fast lithium ion diffusion and enhanced electrochemical performance.

A Research About P-type Polycrystalline Silicon Thin Film Transistors of Low Temperature with Metal Gate Electrode and High Temperature with Gate Poly Silicon (실리콘 게이트전극을 갖는 고온소자와 금속 게이트전극을 갖는 P형 저온 다결정 실리콘 박막 트랜지스터의 전기특성 비교 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.433-439
    • /
    • 2011
  • Poly Si TFTs (poly silicon thin film transistors) with p channel those are annealed HT (high temperature) with gate poly crystalline silicon and LT (low temperature) with metal gate electrode were fabricated on quartz substrate using the analyzed data and compared according to the activated grade silicon thin films and the size of device channel. The electrical characteristics of HT poly-Si TFTs increased those are the on current, electron mobility and decrease threshold voltage by the quality of particles of active thin films annealed at high temperature. But the on/off current ratio reduced by increase of the off current depend on the hot carrier applied to high gate voltage. Even though the size of the particles annealed at low temperature are bigger than HT poly-Si TFTs due to defect in the activated grade poly crystal silicon and the grain boundary, the characteristics of LT poly-Si TFTs were investigated deterioration phenomena those are decrease the electric off current, electron mobility and increase threshold voltage. The results of transconductance show that slope depend on the quality of particles and the amplitude depend on the size of the active silicon particles.

Fabrication of TiO2 Coated Si Nano Particle using Silicon Sawing Sludge (실리콘 절삭 슬러지를 이용한 TiO2 코팅 나노 실리콘 입자의 제조)

  • Seo, Dong Hyeok;Yim, Hyeon Min;Na, Ho Yoon;Kim, Won Jin;Kim, Ryun Na;Kim, Woo-Byoung
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.423-428
    • /
    • 2021
  • Here, we report the development of a new and low-cost core-shell structure for lithium-ion battery anodes using silicon waste sludge and the Ti-ion complex. X-ray diffraction (XRD) confirmed the raw waste silicon sludge powder to be pure silicon without other metal impurities and the particle size distribution is measured to be from 200 nm to 3 ㎛ by dynamic light scattering (DLS). As a result of pulverization by a planetary mill, the size of the single crystal according to the Scherrer formula is calculated to be 12.1 nm, but the average particle size of the agglomerate is measured to be 123.6 nm. A Si/TiO2 core-shell structure is formed using simple Ti complex ions, and the ratio of TiO2 peaks increased with an increase in the amount of Ti ions. Transmission electron microscopy (TEM) observations revealed that TiO2 coating on Si nanoparticles results in a Si-TiO2 core-shell structure. This result is expected to improve the stability and cycle of lithium-ion batteries as anodes.

Determination of Peening Area for Finite Element Residual Stress Analysis of Ultrasonic Nanocrystal Surface Modification under Multiple Impact Conditions (초음파나노표면개질 다중충격 조건에서의 잔류응력 예측을 위한 유한요소 피닝해석 영역 결정)

  • Tae-Hyeon Seok;Seung-Hyun Park;Nam-Su Huh
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.145-156
    • /
    • 2021
  • Ultrasonic Nanocrystal Surface Modification (UNSM) is a peening technology that generates elastic-plastic deformation on the material surface to which a static load of a air compressor and a dynamic load of ultrasonic vibration energy are applied by striking the material surface with a strike pin. In the UNSM-treated material, the structure of the surface layer is modified into a nano-crystal structure and compressive residual stress occurs. When UNSM is applied to welds in a reactor coolant system where PWSCC can occur, it has the effect of relieving tensile residual stress in the weld and thus suppressing crack initiation and propagation. In order to quantitatively evaluate the compressive residual stress generated by UNSM, many finite element studies have been conducted. In existing studies, single-path UNSM or UNSM in a limited area has been simulated due to excessive computing time and analysis convergence problems. However, it is difficult to accurately calculate the compressive residual stress generated by the actual UNSM under these limited conditions. Therefore, in this study, a minimum finite element peening analysis area that can reliably calculate the compressive residual stress is proposed. To confirm the validity of the proposed analysis area, the compressive residual stress obtained from the experiment are compared with finite element analysis results.

One-step phyto-mediated fabrication of silver nanoparticles and its anti-microbial properties

  • Velmurugan Palanivel;Sung-Chul Hong;Veera Ravi Arumugam;Sivakumar Subpiramaniyam;Pyong-In Yi;Seong-Ho Jang;Jeong-Min Suh;Eun-Sang Jung;Je-Sung Park
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.391-397
    • /
    • 2023
  • This manuscript describes the one-step eco-friendly green fabrication of silver nanoparticles (AgNPs) through the in-situ bio-reduction of an aqueous solution of silver nitrate using Syzygium aromaticum leaf extract. UV-vis spectroscopy shows a characteristic SPR peak around 442 nm. FTIR spectroscopy showed that the AgNPs were capped with bioactive phyto-molecules. TEM images revealed oval and spherical particles with a mean diameter of ~12.6 nm. XRD analysis revealed crystalline and face-cantered cubic AgNPs. The phytosynthesized AgNPs showed broad-spectrum anti-microbial activity against two foodborne pathogenic bacteria, Listeria monocytogenes and Staphylococcus aureus. The AgNPs showed a prominent ability to inhibit biofilms formed by L. monocytogenes and S. aureus in laboratory conditions through a crystal violet assay. The results suggest that the AgNPs could be a novel nanotool to develop effective antimicrobial and anti-biofilm agents in food preservation.

SINUS FLOOR GRAFTING USING CALCIUM PHOSPHATE NANO-CRYSTAL COATED XENOGENIC BONE AND AUTOLOGOUS BONE (칼슘포스페이트 나노-크리스탈이 코팅된 골이식재와 자가골을 병행 이용한 상악동 거상술)

  • Pang, Kang-Mi;Li, Bo-Han;Alrashidan, Mohamed;Yoo, Sang-Bae;Sung, Mi-Ae;Kim, Soung-Min;Jahng, Jeong-Won;Kim, Myung-Jin;Ko, Jea-Seung;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.243-248
    • /
    • 2009
  • Purpose: Rehabilitation of the edentulous posterior maxilla with dental implants often poses difficulty because of insufficient bone volume caused by pneumatization of the maxillary sinus and by crestal bone resorption. Sinus grafting technique was developed to increase the vertical height to overcome this problem. The present study was designed to evaluate the sinus floor augmentation with anorganic bovine bone (Bio-$cera^{TM}$) using histomorphometric and clinical measures. Patients and methods: Thirteen patients were involved in this study and underwent total 14 sinus lift procedures. Residual bone height was ${\geq}2mm$ and ${\leq}6mm$. Lateral window approach was used, with grafting using Bio-$cera^{TM}$ only(n=1) or mixed with autogenous bone from ramus and/or maxillary tuberosity(n=13). After 6 months of healing, implant sites were created with 3mm diameter trephine and biopsies taken for histomorphometric analysis. The parameters assessed were area fraction of new bone, graft material and connective tissue. Immediate and 6 months after grafting surgery, and 6 months after implantation, computed tomography (CT) was taken and the sinus graft was evaluated morphometric analysis. After implant installation at the grafted area, the clinical outcome was checked. Results: Histomorphometry was done in ten patients.Bio-$cera^{TM}$ particles were surrounded by newly formed bone. The graft particles and newly formed bone were surrounded by connective tissue including small capillaries in some fields. Imaging processing revealed $24.86{\pm}7.59%$ of new bone, $38.20{\pm}13.19%$ connective tissue, and $36.92{\pm}14.51%$ of remaining Bio-$cera^{TM}$ particles. All grafted sites received an implant, and in all cases sufficient bone height was achieved to install implants. The increase in ridge height was about $15.9{\pm}1.8mm$ immediately after operation (from 13mm to 19mm). After 6 months operation, ridge height was reduced about $11.5{\pm}13.5%$. After implant installation, average marginal bone loss after 6 months was $0.3{\pm}0.15mm$. Conclusion: Bio-$cera^{TM}$ showed new bone formation similar with Bio-$Oss^{(R)}$ histomorphometrically and appeared to be an effective bone substitute in maxillary sinus augmentation procedure with the residual bone height from 2 to 6mm.

Synthesis of Nano TiO2 Coated on Fly Ash Composites by the Precipitation Dropping Method (침전제적하법에 의한 나노 TiO2코팅 석탄회 복합체 제조)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.550-557
    • /
    • 2002
  • TiO$_2$ particles coated on fly ash composites for use in photocatalyst were synthesized by the precipitation dropping method and heated at $700^{\circ}C$ for 2 h. The pH of reaction solution, the addition rate of NH$_4$HCO$_3$, the stirring speed, the reaction temperature and the concentration of TiC1$_4$ had a pronounced effect on the nature of precipitated TiO$_2$ particles on the surface off fly ash and the crystal structure of precipitated TiO$_2$ particles. At an addition rate of NH$_4$HCO$_3$; 1.0 ml/min, the pH of the reaction solution; 6, the stirring speed; 1,000 rpm and the reaction temperature; 8$0^{\circ}C$, about 10 nm of TiO$_2$ particle size and homogeneous precipitated layer on the surface of a fly ash was achieved. On the contrary, at an addition rate of NH$_4$HCO$_3$; 0.3,0.5 ml/min, the pH of the reaction solution; 2 and 11, the stirring speed; 300~500 rpm and the reaction temperature; lower than 5$0^{\circ}C$:, Inhomogeneous precipitated layer was developed on a fly ash. TiO$_2$ particles with anatase phase was formed as-dried precipitation at the low concentration of Tic14, the high addition rate of NH$_4$HCO$_3$ and the high reaction temperature, the crystalline fraction of anatase increased with raising heat-treatment temperature and rutile phase began to formation at 80$0^{\circ}C$. The crystal size of TiO$_2$ particles increased with raising the heat-treatment temperature, the crystal size was showed about 21 m at $700^{\circ}C$. Anatase type of TiO$_2$ coated on the fly ash heated at $700^{\circ}C$ for 2 h showed 1.25 g/cm$^3$of particle density, 82.8% of strength and 69.5 Lab of whiteness and can be used as a photocatalyst.