• Title/Summary/Keyword: Nano-crystal

Search Result 630, Processing Time 0.026 seconds

Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel

  • Lee, J.H.;Kim, K.T.;Pyoun, Y.S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.226-236
    • /
    • 2016
  • 316L stainless steels have been widely used in many engineering fields, because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion and stress corrosion cracking etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled by methods such as the lowering of carbon content, solution heat treatment. This work focused on the intergranular corrosion mechanism of slightly-sensitized and Ultrasonic Nano-crystal Surface Modification (UNSM)-treated 316L stainless steel. Samples were sensitized for 1, 5, and 48 hours at $650^{\circ}C$ in $N_2$ gas atmosphere. Subsequently UNSM treatments were carried out on the surface of the samples. The results were discussed on the basis of the sensitization by chromium carbide and carbon segregation, the residual stress and grain refinement. Even though chromium carbide was not precipitated, the intergranular corrosion rate of 316L stainless steel was drastically increased with aging time, and it was confirmed that the increased intergranular corrosion rate of slightly-sensitized (not carbide formed) 316L stainless steel was due to the carbon segregation along the grain boundaries. However, UNSM treatment improved the intergranular corrosion resistance of aged stainless steels, and its improvement was due to the reduction of carbon segregation and the grain refinement of the outer surface, including the introduction of compressive residual stress.

Effect of Molecular Weight on Thermal Behavior of Polyurthanes Containing Mesogen Unit (분자량이 메소겐기를 포함한 폴리우레탄의 열적거동에 미치는 영향)

  • Hong, Sung-Chul;Lee, Woo-Young;Nam, Byeong-Uk;Lee, Sang-Won
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.212-221
    • /
    • 2005
  • Polyurethanes containing mesogen unit (MPU-6) were prepared from 4,4'-diphenylmethane diisocyanate (MDI) and 4,4'-bis(6-hydroxy hexoxy)biphenyl (BP-6) having flexible chain composed of 6 carbons. Intrinsic viscosities of MPU-6s were in the range of $0.23{\sim}0.56 dL/g$. The mesomorphic behaviors of MPU-6 were observed in X-ray and polarizing microscopy analysis. However, MPU-6s demonstrated a 'virtual liquid crystal' behavior, which did not exhibit mesophase on slow heating and slow cooling. MPU-6 having lower molecular weight exhibited higher crystallization rate and melting crystallization temperature due to increased mobility of polymer chains. The increased mobility of polymer chains facilitate the orientation of mesogen units that may act as a nucleating agent.

Preparation of Nanosized Palladium Oxide Powder with Average Particle Size Below 30 nm by Spray Pyrolysis Process (평균입도 30 nm 이하의 산화 팔라듐(PdO) 분체의 분무열분해공정에 의한 제조기술 개발)

  • Kim, Donghee;Yu, Jaekeun
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.32-37
    • /
    • 2018
  • This study was conducted as a preliminary study for the recycling of palladium and palladium oxide. In this study, thermodynamic equations for the formation of palladium oxide (PdO) are established. Palladium chloride is dissolved into hydrochloric acid to generate a palladium chloride solution. Nanosized palladium oxide powder with an average particle size below 30 nm were generated from this raw material solution by means of a spray pyrolysis process. The palladium oxide particles were composed of a single solid crystal. The results of XRD analysis showed that only a PdO phase of the generated powder was formed. And, the specific surface area of the generated palladium powder was approximately $32m^2/g$.

Surface Modification of High Energetic Materials by Molecular Self-assembly (자기조립법을 이용한 고에너지물질의 표면개질 연구)

  • Kim, Ja-Young;Jeong, WonBok;Shin, Chae-Ho;Kim, Jin-Seok;Lee, Keundeuk;Lee, Kibong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Self-assembly of organic molecules is formed spontaneously on surfaces by electrostatic interaction with substrate. This research has shown that the self-assembly improves safety and handling tractability of high-energetic materials (HEMs). According to the recent study, control of the specific crystal size for reducing the internal defects is mightily important, because the internal defects are a factor in unstability of HEMs. In turn, we performed self-assembly of organic molecules and HEMs by using nano-sized HEMs, which were produced by drowing-out or milling/crystallization. Surface modification efficiency was decided by size distribution, zeta-potential, friction sensitivity and electrostatic charge.

The Presence and Role of Intergranular Phase in Nd8Fe86-xNbxB6 (x = 0, 1, 2, 3) Nanocomposite Magnet Characterized by Mossbauer Spectroscopy

  • Han, Jong-Soo;Yang, Choong-Jin;Park, Eon-Byeung;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.14-22
    • /
    • 2005
  • Precisely refined Mossbauer study and nano structure observation revealed that intergranular phase formed between a-Fe and Nd₂Fe14B phase in NdFeNbB alloys plays a significant role on the magnetic properties. The intergranular interaction was characterized in term of Henkel Plot (δM plot), and hyperfine field, quardrupole splitting and isomer shift were refined to predict the presence and role of the intergranular phase. By the addition of Nb into Nd8Fe86B6 composition, coercivity was found to increase by 25% due to the refinement of average grain size of both the soft and hard magnetic phases which was decreased from 50 nm of virgin Nd/sub 8/Fe/sub 86/B/sub 6/ to 25 nm in Nd8Fe 85Nb₁B6 alloys. The role of Nb addition was confirmed to stabilize the Nd₂Fe14B lattice preventing from thermal vibration of the corresponding sites substituted Fe by Nb atoms in all sites in the Nd₂Fe14B lattice. The enhanced coercivity was originated from the exchange hardening of soft and amorphous phases surrounding the hard magnetic Nd₂Fe14B crystal.

Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines

  • Nookala, Supraja;Tollamadugu, Naga Venkata Krishna Vara Prasad;Thimmavajjula, Giridhara Krishna;Ernest, David
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.97-109
    • /
    • 2015
  • Citrate ion is a commonly used reductant in metal colloid synthesis, undergoes strong surface interaction with silver nanocrystallites. The slow crystal growth observed as a result of the interaction between the silver surface and the citrate ion makes this reduction process unique compared to other chemical and radiolytic synthetic methods. The antimicrobial effects of silver (Ag) ion or salts are well known, but the effects of citrate coated Ag nanoparticles (CAgNPs) are scant. Herein, we have isolated biofilm causative bacteria and fungi from drinking water PVC pipe lines. Stable CAgNPs were prepared and the formation of CAgNPs was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance of CAgNPs at 430 nm. Fourier transform infrared spectroscopic analysis revealed C=O and O-H bending vibrations due to organic capping of silver responsible for the reduction and stabilization of the CAgNPs. X-ray diffraction micrograph indicated the face centered cubic structure of the formed CAgNPs, and morphological studies including size (average size 50 nm) were carried out using transmission electron microscopy. The hydrodynamic diameter (60.7 nm) and zeta potential (-27.6 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of CAgNPs was evaluated (in vitro) against the isolated fungi, Gram-negative and Gram-positive bacteria using disc diffusion method and results revealed that CAgNPs with 170ppm concentration are having significant antimicrobial effects against an array of microbes tested.

A Study for Preparation of Nano Ethosome Loaded with Resveratrol (레스베라트롤을 함유한 나노 에토좀 제조에 관한 연구)

  • Seo, Dong Hoan;Yoon, Jong Hyuk;Kim, Youn Joon;Byun, Sang Yo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • Resveratrol is a natural polyphenol. It protects skin from skin injury, ultraviolet radiation and pathogenic attack. This study is to find the optimum condition for the preparation of ethosome loading amount of resveratrol in ethosome. Ethosomes were prepared by modified hydrated liquid crystal method. Investigation of factors affecting the entrapment efficiency and particle size of ethosomes was carried out. The particle size of ethosome were measured by particle analyzer. The loading efficiency of resveratrol in ethosome was measured by HPLC. The particle sizes were 111.2 ~ 112.8 nm and the loading efficiency of resveratrol was 81.25 ~ 88.75%. The optimum conditions for the preparation of ethosome was obtained from of lecithin : resveratrol : cholesterol : ethanol at a weight ratio of 2.0 : 0.08 : 0.05 : 20.0.

Characterization of LaCoO3 Perovskite Catalyst for Oxygen Reduction Reaction in Zn-air Rechargeable Batteries (아연-공기전지용 페롭스카이트 산화물 촉매의 산소환원반응 특성)

  • Sun, Ho-Jung;Cho, Myung-Yeon;An, Jung-Chul;Eom, Seungwook;Park, Gyungse;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • $LaCoO_3$ powders synthesized by Pechini process were pulverized by planetary ball-milling to decrease particle size and characterized as a catalyst in alkaline solution for oxygen reduction and evolution reaction (ORR & OER). The changes of physical properties, such as particle size distribution, surface area and electric conductivity, were analyzed as a function of ball-milling time. Also, the variations of the crystal structure and surface morphology of ball-milled powders were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically catalytic activities of the intrinsic $LaCoO_3$ powders decreased with increasing ball-milling time, but their electrochemical performance as an electrode improved by the increase of the surface area of the powder.

Manganese Doped LiFePO4 as a Cathode for High Energy Density Lithium Batteries (고에너지밀도 리튬전지를 위한 망간이 첨가된 LiFePO4 양극재료)

  • Kim, Dul-Sun;Kim, Jae-Kwang;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Porous $LiMn_{0.6}Fe_{0.4}PO_4$ (LMFP) was synthesized by a sol-gel process. Uniform dispersion of the conductive carbon source throughout LMFP with uniform carbon coating was achieved by heating a stoichiometric mixture of raw materials at $600^{\circ}C$ for 10 h. The crystal structure of LMFP was investigated by Rietveld refinement. The surface structure and pore properties were investigated by SEM, TEM and BET. The LMFP so obtained has a high specific surface area with a uniform, porous, and web-like nano-sized carbon layer at the surface. The initial discharge capacity and energy density were 152 mAh/g and 570 Wh/kg, respectively, at 0.1 C current density, and showed stable cycle performance. The combined effect of high porosity and uniform carbon coating leads to fast lithium ion diffusion and enhanced electrochemical performance.

A Research About P-type Polycrystalline Silicon Thin Film Transistors of Low Temperature with Metal Gate Electrode and High Temperature with Gate Poly Silicon (실리콘 게이트전극을 갖는 고온소자와 금속 게이트전극을 갖는 P형 저온 다결정 실리콘 박막 트랜지스터의 전기특성 비교 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.433-439
    • /
    • 2011
  • Poly Si TFTs (poly silicon thin film transistors) with p channel those are annealed HT (high temperature) with gate poly crystalline silicon and LT (low temperature) with metal gate electrode were fabricated on quartz substrate using the analyzed data and compared according to the activated grade silicon thin films and the size of device channel. The electrical characteristics of HT poly-Si TFTs increased those are the on current, electron mobility and decrease threshold voltage by the quality of particles of active thin films annealed at high temperature. But the on/off current ratio reduced by increase of the off current depend on the hot carrier applied to high gate voltage. Even though the size of the particles annealed at low temperature are bigger than HT poly-Si TFTs due to defect in the activated grade poly crystal silicon and the grain boundary, the characteristics of LT poly-Si TFTs were investigated deterioration phenomena those are decrease the electric off current, electron mobility and increase threshold voltage. The results of transconductance show that slope depend on the quality of particles and the amplitude depend on the size of the active silicon particles.