• 제목/요약/키워드: Nano-crystal

검색결과 630건 처리시간 0.033초

Atomistic simulation of surface passivated wurtzite nanowires: electronic bandstructure and optical emission

  • Chimalgi, Vinay U.;Nishat, Md Rezaul Karim;Yalavarthi, Krishna K.;Ahmed, Shaikh S.
    • Advances in nano research
    • /
    • 제2권3호
    • /
    • pp.157-172
    • /
    • 2014
  • The three-dimensional Nano-Electronic Modeling toolkit (NEMO 3-D) is an open source software package that allows the atomistic calculation of single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells and nanocrystals containing millions of atoms. This paper, first, describes a software module introduced in the NEMO 3-D toolkit for the calculation of electronic bandstructure and interband optical transitions in nanowires having wurtzite crystal symmetry. The energetics (Hamiltonian) of the quantum system under study is described via the tight-binding (TB) formalism (including $sp^3$, $sp^3s^*$ and $sp^3d^5s^*$ models as appropriate). Emphasis has been given in the treatment of surface atoms that, if left unpassivated, can lead to the creation of energy states within the bandgap of the sample. Furthermore, the developed software has been validated via the calculation of: a) modulation of the energy bandgap and the effective masses in [0001] oriented wurtzite nanowires as compared to the experimentally reported values in bulk structures, and b) the localization of wavefunctions and the optical anisotropy in GaN/AlN disk-in-wire nanowires.

NiFe2O4를 이용한 열화학 사이클 H2 제조 (Thermal Behavior of NiFe2O4 for Hydrogen Generation)

  • 한상범;강태범;주오심;정광덕
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.298-304
    • /
    • 2003
  • The thermal behavior of $NiFe_2O_4$ prepared by a solid-state reaction was investigated for $H_2$ generation by the thermochemical cycle. The reduction of $NiFe_2O_4$ started from $800^{\circ}C$, and the weight loss was 0.2-0.3 wt% up to $1000^{\circ}C$. In the $H_2O$ decomposition reaction, $H_2$ was generated by oxidation of reduced $NiFe_2O_4$. The crystal structure of $NiFe_2O_4$ maintained during the redox reaction of 5 cycles. From this observation, the lattice oxygen in $NiFe_2O_4$ is released without the structural change during the thermal reduction and oxygen deficient $NiFe_2O_4$ can be restored to the spinel structure of $NiFe_2O_4$.

Exchange Coupling in Massively Produced Nd2Fe14B+Fe3B Nanocomposite Powders

  • Yang, Choong Jin;Park, Eon Byung;Han, Jong Soo;Kim, Eung Chan
    • Journal of Magnetics
    • /
    • 제9권2호
    • /
    • pp.27-33
    • /
    • 2004
  • Magnetic properties of $Nd_4Fe_{77.5}B_{18.5}$ compound in term of exchange coupling between $Nd_2Fe_{14}B$ and $Fe_3B$ magnetic nano crystals in melt spun powders were characterized by varying the quenching speed in mass production line. The exchange coupled phenomenon was characterized as functions of nano crystal size and volume fraction of each magnetic phase which was possible by employing Henkel plot (${\delta}M$) and refined Mossbauer spectroscopy. The optimized magnetic properties obtained from the present volume production line were: $B_r= 11.73 kG,{_i}H_c/ = 3.082 kOe$, and $(BH)_{max} = 12.28 MGOe.$ The volume fraction of each magnetic phase for those conditions giving the grain size of 10 nm were ${\alpha}-Fe; 4.2%, Fe_3B; 60.1 %$, and $Nd_2Fe_{14}B; 35.7%$. The superior magnetic properties in the $Nd_2Fe_{14}Fe_3B$ based nanocomposites were confirmed to be dependant on the volume fraction of $Fe_3B$.

Enhanced Optical Properties of Au Nanoparticles/ZnO Nanowires Fabiracted by X-ray Induced Wet Process

  • 이무성;강현철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.318.1-318.1
    • /
    • 2014
  • Metal nano-crystals have been received much attentions owing to their excellent catalytic property and surface plasmon effect. In the last decade, many studies on synthesizing well-dispersive nanoparticles and on understanding their distinct physical properties have been performed. There were tremendous reports revealing the electrochemical activities and enhancement of surface plasmonic effect were dependent mainly on the size, shape, and composition. So far, most fabrication methods have been based on vacuum based deposition techniques, such as chemical vapor deposition and electron-beam evaporation, and then annealed them to transform into the nanoparticles. Recently, there were several reports regarding to the photoinduced nano-crystal synthesis as an effective way to produce the metal nanoparticles. In this study, we report synchrotron x-ray mediated synthesis of Au nanoparticles on ZnO nanowires. ZnO nanowires were fabricated by hydrothermal method, and then they were dip into a solution having Au clusters. Detailed structural evolution of Au nanoparticles was investigated using scanning electron microscopy and photoluminescence measurements. The results on formation of well-dispersive Au nanoparticles on ZnO nanowires will be presented.

  • PDF

전착법을 이용한 메조포러스 니켈 필름의 제조와 특성 분석 (Preparation and Characterization of Mesoporous Ni Film Made by Electroplating Method)

  • 이지훈;백영남;김영석;신승한
    • 한국표면공학회지
    • /
    • 제40권1호
    • /
    • pp.16-22
    • /
    • 2007
  • Recently, mesoporous metallic materials are becoming more and more important in various applications like catalysts, electrochemical detectors, batteries, and fuel cells because of their high surface area. Among the various methods for manufacturing mesoporous structure, surfactant templating method followed by electroplating has been tried in this study. A mesoporous metallic film was prepared by electrodeposition from electroplating solution mixed with surfactant template. Nonionic type lyotropic liquid crystalline surfactant, Brij56, and nickel acetate based solution were selected as a template material and electroplating solution, respectively. To determine the content of surfactant forming a hexagonal column structure, the phase diagram of electroplating solution and surfactant mixture has been exploited by polarized optical microscopy equipped with heating and cooling stage. Nickel films were electroplated on Cu foil by stepwise potential input method to alleviate the concentration polarization occurred during the electroplating process. TEM and XRD analyses were performed to characterize the size and shape of mesostructures in manufactured nickel films, and electrochemical characterization was also carried out using cyclic voltammetry.

Analysis of In/Ga Inter-Diffusion Effect on the Thermodynamical Properties of InAs Quantum Dot

  • Abdellatif, M.H.;Song, Jin Dong;Lee, Donghan;Jang, Yudong
    • Applied Science and Convergence Technology
    • /
    • 제25권6호
    • /
    • pp.158-161
    • /
    • 2016
  • Debye temperature is an important thermodynamical factor in quantum dots (QDs); it can be used to determine the degree of homogeneity of a QD structure as well as to study the interdiffusion mechanism during growth. Direct estimation of the Debye temperature can be obtained using the Varshni relation. The Varshni relation is an empirical formula that can interpret the change of emission energy with temperature as a result of phonon interaction. On the other hand, phonons energy can be calculated using the Fan Expression. The Fan expression and Varshni relation are considered equivalent at a temperature higher than Debye temperature for InAs quantum dot. We investigated InAs quantum dot optically, the photoluminescence spectra and peak position dependency on temperature has been discussed. We applied a mathematical treatment using Fan expression, and the Varshni relation to obtain the Debye temperature and the phonon energy for InAs quantum dots sample. Debye temperature increase about double compared to bulk crystal. We concluded that the In/Ga interdiffusion during growth played a major role in altering the quantum dot thermodynamical parameters.

기울어진 GaAs(100) 기판 위에 성장된 InAs 박막 특성에 대한 As BEP 효과 (As BEP Effects on the Properties of InAs Thin Films Grown on Tilted GaAs(100) Substrate)

  • 김민수;임재영
    • 한국표면공학회지
    • /
    • 제43권4호
    • /
    • pp.176-179
    • /
    • 2010
  • The InAs thin films were grown on GaAs(100) substrate with $2^{\circ}C$ tilted toward [$0\bar{1}\bar{1}$] with different As beam equivalent pressure (BEP) by using molecular beam epitaxy. Growth temperature and thickness of the InAs thin films were $480^{\circ}C$ and 0.5 ${\mu}m$, respectively. We studied the relation between the As BEP and the properties of InAs thin films. The properties of InAs thin films were observed by reflection high-energy electron diffraction (RHEED), optical microscope, and Hall effect. The growth, monitored by RHEED, was produced through an initial 2D (2-dimensional) nucleation mode which was followed by a period of 3D (3-dimensional) island growth mode. Then, the 2D growth recovered after a few minutes and the streak RHEED pattern remained clear till the end of growth. The crystal quality of InAs thin films is dependent strongly on the As BEP. When the As BEP is $3.6{\times}10^{-6}$ Torr, the InAs thin film has a high electron mobility of 10,952 $cm^2/Vs$ at room temperature.

천연고분자 매트릭스를 사용한 산화티탄 나노입자의 합성 (Preparation of Nano-sized Titanium Oxide Powder Using Natural Polymer Matrix)

  • 김수종;한정화;심재호
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.489-494
    • /
    • 2013
  • Nano-sized titanium oxide powders were synthesized by a polymer matrix technique using pulp and Titanium tetraisopropoxide (TTIP) as starting materials. The synthesized powders were characterized by XRD and FE-SEM. The particle size of the powders was controlled by preparation conditions, such as heat treatment temperature and time. After investigating various drying and heat treatment conditions, 50-100 nm sized homogeneous titanium oxide particles were obtained by treating at $600^{\circ}C$ for 1 h. The crystallization and rapid growth of particles was accelerated by increasing heat treatment temperature and time. Anatase phase generated below $600^{\circ}C$ transformed to the rutile phase with increasing heat treatment temperature. Moreover, above $800^{\circ}C$, heat treatment time had a very large influence on particle growth, and changing the heating condition also had a large influence on crystal growth.

CNT/PVDF 압전 복합막의 제작과 전기적 특성 (Fabrication of CNT/PVDF Composite Film and Its Electrical Properties)

  • 이선우;정낙천
    • 한국전기전자재료학회논문지
    • /
    • 제26권8호
    • /
    • pp.620-623
    • /
    • 2013
  • The carbon nanotube / poly-vinylidene fluoride (CNT/PVDF) composite films for the nano-generator devices were fabricated by spray coating method using the CNT/PVDF solution, which was prepared by adding PVDF pellets into the CNT dispersed N-Methyl-2-pyrroli-done (NMP) solution. The flexible CNT/PVDF composite films were investigated by the scanning electron microscopy, which revealed that the CNTs were uniformly dispersed in the PVDF matrix and thickness of the films was approximately $20{\mu}m$. Fourier transform infra-red spectra were used to investigate crystal structure of the as-spray-coated CNT/PVDF films, and we found that they revealed extremely large portion of the ${\beta}$ phase PVDF. The capacitance of the CNT/PVDF films increased by adding CNTs into the PVDF matrix, and finally saturated. However, the resistance didn't show any saturation effect in the CNT concentration range of 0~4 wt%. Finally, the resulting nano-generator devices revealed reasonable current output after given mechanical stress.

Size control of Co-doped ZnO rods by changing the solvent

  • Zhao, Jing;Yan, Xiaoqin;Lei, Yang;Zhao, Yanguang;Huang, Yunhua;Zhang, Yue
    • Advances in materials Research
    • /
    • 제1권1호
    • /
    • pp.75-81
    • /
    • 2012
  • In this work, the Co-doped ZnO rods were prepared by the hydrothermal method. The size of these rods can be changed from micro-size to nano-size by using different solutions during the preparation. The results of transmission electron microscopy (TEM) and selected area electron diffraction (SAED) showed that the as-prepared nano-sized Co-doped rods have single-crystal structure. The polarized Raman experiments were presented on an individual micro-sized Co-doped ZnO rod in the $X(YY)\vec{X}$, $X(ZY)\vec{X}$ and $X(ZZ)\vec{X}$ configurations, the results of polarized Raman indicated that these rods are crystallized and their growth direction is parallel to c-axis.