• Title/Summary/Keyword: Nano-crystal

Search Result 630, Processing Time 0.023 seconds

The synthesis of ultrathin Nb-doped TiOx nanosheets (초박막 두께의 Nb-TiOx 나노시트 합성)

  • Lee, Sang Eun;Seo, Jun;Park, Hee Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.194-199
    • /
    • 2020
  • By controlling the composition of the metal-oxide nanosheet having a two-dimensional layered crystal structure, material properties and application can be extended. In this study, the composition of the nanosheet could be expanded from pure composition to doping composition by successfully synthesizing the TiO2 nanosheet doped with Nb. Specifically, the doping composition was designed when synthesizing the layered metal oxide as a starting material (K0.8Ti1.73-xNbxLi0.27O4, x = 0, 0.03, 0.07) and chemical exfoliation was performed. By doing this, it was possible to obtain the Nb-doped TiOy ultrathin nanosheet. The size of the nano sheet was 2 ㎛ or less based on the long length in the x-y direction, and the thickness was about 1 nm. Nb-doping was confirmed by XRD and SEM-EDS analysis.

Importance of convection during physical vapor transport of Hg2Cl2 in the presence of Kr under environments of high gravitational accelerations

  • Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Special attention in the role of convection in vapor crystal growth has been paid since some single crystals under high gravity acceleration of $10g_0$ appear considerably larger than those under normal gravity acceleration ($1g_0$). With increasing the gravity acceleration from $1g_0$ up to $10g_0$, the total molar flux for ${\Delta}T$ = 30 K increases by a factor of 4, while for ${\Delta}T$ = 90, by a factor of 3. The maximum molar fluxes for three different gravity levels of $1g_0$, $4g_0$ and $10g_0$, appear approximately in the neighborhood of y = 0.5 cm, and the molar fluxes show asymmetrical patterns, which indicate the occurrence of either one single or more than one convective cell. As the gravitational level is enhanced form $1g_0$ up to $10g_0$, the intensity of convection is increased significantly through the maximum molar fluxes for ${\Delta}T$ = 30 K and 90 K. At $10g_0$, the maximum total molar flux is nearly invariant for for ${\Delta}T$ = 30 K and 90 K. The total molar flux increases with increasing the gravity acceleration, for $1g_0{\leq}g_y{\leq}10g_0$, and decreases with increasing the partial pressure of component B, a noble gas called as Kr (Krypton), $P_B$. The ${{\mid}U{\mid}}_{max}$ is directly proportional to the gravity acceleration for 20 Torr $P_B{\leq}300$ Torr. As the partial pressure of $P_B$ (Torr) decreases from 300 Torr to 20 Torr, the slopes of the ${{\mid}U{\mid}}_{max}s$ versus the gravity accelerations increase from 0.29 sec to 0.54 sec, i.e. by a factor of 2. The total molar flux of $Hg_2Cl_2$ is first order exponentially decayed with increasing the partial pressure of component B, $P_B$ (Torr) from 20 Torr up to 300 Torr.

Synthesis of Ga2O3 powders by precipitation method (침전법을 이용한 Ga2O3 분말의 합성)

  • Jung, Jong-Yeol;Kim, Sang-Hun;Kang, Eun-Tae;Kim, Jin-Ho;Han, Kyu-Sung;Hwang, Kwang-Teak;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • In this study, we investigated synthesis and characteristics of gallium oxide ($Ga_2O_3$) powders prepared by precipitation method. $Ga_2O_3$ powders were synthesized using $Ga(NO_3)_3$ as a starting material and $NH_4OH$ as a precipitant. The oxidation temperature of $Ga(OH)_3$ and phase transition temperature of $Ga_2O_3$ was revealed using TG-DSC analysis. The crystal structural change of $Ga_2O_3$ powders was investigated by XRD analysis. The morphologies and size distributions of $Ga_2O_3$ particles were analyzed using SEM.

A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature (HFCVD 증착 온도 변화에 따른 단결정 다이아몬드 표면 형상 및 성장률 변화)

  • Gwon, J.U.;Kim, M.S.;Jang, T.H.;Bae, M.K.;Kim, S.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.239-244
    • /
    • 2021
  • Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.

High Temperature Grain Growth Behavior of Aerosol Deposited BaTiO3 Film on (100), (110) Oriented SrTiO3 Single Crystal (상온분사분말공정에 의해 SrTiO3 (100), (110) Seed에 코팅된 BaTiO3의 고온 성장 거동 분석)

  • Lim, Ji-Ho;Lee, Seung Hee;Kim, Ki Hyun;Ji, Sung-Yub;Jung, Suengwoon;Park, Chun-kil;Jung, Han-Bo;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.684-689
    • /
    • 2019
  • Single crystals, which have complexed composition, are fabricated by solid state grain growth. However, it is hard to achieve stable properties in a single crystal due to trapped pores. Aerosol deposition (AD) is suitable for fabrication of single crystals with stable properties because this process can make a high density coating layer. Because of their unique features (nano sized grains, stress inner site), it is hard to fabricate single crystals, and so studies of grain growth behavior of AD film are essential. In this study, a $BaTiO_3$ coating layer with ${\sim}9{\mu}m$ thickness is fabricated using an aerosol deposition method on (100) and (110) cut $SrTiO_3$ single crystal substrates, which are adopted as seeds for grain growth. Each specimen is heat-treated at various conditions (900, 1,100, and $1,300^{\circ}C$ for 5 h). $BaTiO_3$ layer shows different growth behavior and X-ray diffraction depending on cutting direction of $SrTiO_3$ seed. Rectangular pillars at $SrTiO_3$ (100) and laminating thin plates at $SrTiO_3$ (110), respectively, are observed.

Comparison of Micro Trench Machining Characteristics with Nonferrous Metal and Polymer using Single Diamond Cutting Tool (단결정 다이아몬드 공구에 의한 비철금속과 폴리머 소재의 마이크로 트렌치 가공특성 비교)

  • Choi, Hwan-Jin;Jeon, Eun-Chae;Choi, Doo-Sun;Je, Tae-Jin;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.355-358
    • /
    • 2013
  • Micro trench structures are applied in gratings, security films, wave guides, and micro fluidics. These micro trench structures have commonly been fabricated by micro electro mechanical system (MEMS) process. However, if the micro trench structures are machined using a diamond tool on large area plate, the resulting process is the most effective manufacturing method for products with high quality surfaces and outstanding optical characteristics. A nonferrous metal has been used as a workpiece; recently, and hybrid materials, including polymer materials, have been applied to mold for display fields. Thus, the machining characteristics of polymer materials should be analyzed. In this study, machining characteristics were compared between nonferrous metals and polymer materials using single crystal diamond (SCD) tools; the use of such materials is increasing in machining applications. The experiment was conducted using a square type diamond tool and a shaper machine tool with cutting depths of 2, 4, 6 and 10 ${\mu}m$ and a cutting speed of 200 mm/s. The machined surfaces, chip, and cutting force were compared through the experiment.

Hydrothermal Synthesis and Exfoliation of Mg/Al Layered Double Hydroxide with Tailored Aspect Ratio (수열 합성 및 박리에 의한 Mg/Al 층상 이중 수산화물의 종횡비 제어)

  • Hwang, Sung-Hwan;Kim, Donghyun;Kim, Yewon;Jung, Hyunsung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.822-827
    • /
    • 2017
  • Mg/Al layered double hydroxide with two-dimensional (2D) nanostructures was synthesized by a hydrothermal technique. The morphology and aspect ratio of $Mg_4Al_2(OH)_{14}3H_2O$ were controlled by the concentration and kinds of the hydrolysis agent, and temperature. The aspect ratio of $Mg_4Al_2(OH)_{14}3H_2O$ layered double hydroxides with the 2D hexagonal crystal structure was tailored from about 12.6 to about 45.7. The intercalated $CO{_3}^{2-}$ anions of the synthesized 2D $Mg_4Al_2(OH)_{14}3H_2O$ layered double hydroxides were exchanged to $NO_3{^-}$ anions. The bulk 2D $Mg_4Al_2(OH)_{14}3H_2O$ layered double hydroxides with the increased space between two layers due to the anion exchange were exfoliated in a formamide solution. The aspect ratio of the exfoliated 2D $Mg_4Al_2(OH)_{14}3H_2O$ layered double hydroxides increased to 570.3.

Characterization of Microstructure and Mechanical Properties of High-Purity Iron Added with Copper

  • Taguchi, O.;Lee, Su Yeon;Uchikoshi, M.;Isshiki, M.;Lee, Chan Gyu;Suzuki, S.;Gornakov, Vladimir S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.1
    • /
    • pp.22-26
    • /
    • 2012
  • An influence of the addition of copper (0.5, 1.0 and 1.5 mass% Cu) on the microstructure and mechanical properties of high purity iron (99.998 mass%) was characterized. The microstructure and microhardness of high-purity iron based samples, which were rolled at room temperature and subsequently annealed, were investigated in this work. The microstructure of the samples has been observed by electron back scattering diffraction (EBSD) and the mechanical properties have been studied by using micro-Vickers hardness test. The results of microstructural observation showed that deformation band was formed in high purity iron by rolling at room temperature, and it was recovered by annealing up to about 900 K. The microhardness results showed that the softening of high-purity iron occurred by annealing up to about 900 K, while the hardness of iron added with about 0.5-1.5 mass% copper was kept over 100 Hv and at the early time of annealing reached a maximum. The hardness of iron added with a small amount of copper may be attributed to precipitation hardening as well as solution hardening. The orientation of crystal in recrystallized grain was almost same as that of deformed grain.

Fabrication of a Nano-Wire Grid Polarizer for Brightness Enhancement in TFT-LCD Display (TFT-LCD용 휘도 성능을 향상시키는 나노 와이어 그리드 편광 필름의 제작)

  • Huh, Jong-Wook;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.105-124
    • /
    • 2011
  • TFT-LCD consists of LCD panel on the top, circuit unit on the side and BLU on the bottom. The recent development issues of BLU-dependent TFT-LCD have been power consumption minimization, slimmerization and size maximization. As a result of this trend, LED is adopted as BLU instead of CCFL to increase brightness and to reduce thickness. In liquid crystal displays, the light efficiency is below 10% due to the loss of light in the path from a light source to an LCD panel and presence of absorptive polarizer. This low efficiency results in low brightness and high power consumption. One way to circumvent this situation is to use a reflective polarizer between backlight units and LCD panels. Since a nano-wire grid polarizer has been known as a reflective polarizer, an idea was proposed that it can be used for the enhancement of the brightness of LCD. The use of reflective polarizing film is increasing as edge type LED TV and 3D TV markets are growing. This study has been carried out to fabrication of the nano-wire grid polarizer(NWGP) and investigated the brightness enhancement of LCD through polarization recycling by placing a NWGP between an c and a backlight unit. NWGPs with a pitch of 200nm were fabricated using laser interference lithography and aluminum sputtering and wet etching. And The NWGP fabrication process was using by the UV imprinting and was applied to plastic PET film. In this case, the brightness of an LCD with NWGPs was 1.21 times higher than that without NWGPs due to polarization recycling.

Congruent LiNbO3 Crystal Periodically Poled by Applying External Field (외부전계 인가에 의한 조화용융조성 LiNbO3 결정의 주기적 분극반전)

  • Kwon, Soon-Woo;Yang, Woo-Seok;Lee, Hyung-Man;Kim, Woo-Kyung;Lee, Han-Young;Yoon, Dae-Ho;Song, Yo-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.749-752
    • /
    • 2005
  • When an electric field higher than a characteristic coercive field is applied to a ferroelectric such as $LiNbO_3$, the orientation of the spontaneous polarization is reversed, which causes the reversal of the sign of odd-rank tensor properties such as electro-optic and nonlinear optic coefficients. A fabrication process of insulator and periodic external field assisted poling of a z-cut $LiNbO_3$ have been optimized for a periodic $180^{\circ}$ phase inversion along z-axis. The poling jig and the poling control system, fully controlled by a computer, for high quality and reproducible PPLN fabrication have been devised. Periodically polarization reversed PPLN was adjusted based on the fabricated thickness of insulator. The poling structure of PPLN was observed under a microscope after etching PPLN samples by an etching solution ($HF:HNO_3$ = 1 : 2) for about 15 min.