• Title/Summary/Keyword: Nano-crystal

Search Result 630, Processing Time 0.021 seconds

Predictions of zinc selenide single crystal growth rate for the micro gravity experiments

  • Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.226-232
    • /
    • 2004
  • One predicts the crystal growth rate of ZnSe with a low vapor pressure system in a horizontal configuration based on one dimensional advection-diffusion and two-dimensional diffusion-convection model. The present results show that for the ratios of partial pressures, s = 0.2 and 2.9, the growth rate increases with the temperature differences between the source and crystal. As the ratio of partial pressure approaches the stoichiometric value, s = 2 from s = 1.5 (zinc-deficient case: s < 2) and 2.9 (zinc-rich case: s > 2), the rate increases sharply. For the ranges from 1.5 to 1.999 (zinc-deficient case: s < 2) and from s = 9 to 2.9 (zinc-rich case: s > 2), the rate are slightly varied. From the viewpoint of the order of magnitude, the one-dimensional model for low vapor pressure system falls within the 2D predictions, which indicates the flow fields would be advective-diffusive. For the effects of gravitational accelerations on the rate, the gravitational constants are varied from 1 g to $10^{-6}$ g for $\Delta$T = 50 K and s = 1.5, the rates remain nearly constant, i.e., 211 mg/hr, which indicates Stefan flow is dominant over convection.

Effect of aspect ratio on solutally buoyancy-driven convection in mercurous chloride $(Hg_2Cl_2)$ crystal growth processes

  • Kim, Geug-Tae;Lee, Kyoung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • For an aspect ratio (transport length-to-width) of 5, Pr = 2.89, Le = 0.018, Pe = 2.29, Cv = 1.11, $P_B$=40 Torr, solutally buoyancy-driven convection $(Gr_s=3.03{\times}10^5)$ due to the disparity in the molecular weights of the component A $(Hg_2Cl_2)$ and B (He) is stronger than thermally buoyancy-driven convection $(Cr_t=1.66{\times}10^4)$. The crystal growth rate is decreased exponentially for $2.5\;{\leq}\;Ar\;{\leq}\;5$, with (1) the linear temperature profile and a fixed temperature difference, (2) the imposed thermal profile, a fixed crystal region and varied temperature difference. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. But, with the imposed thermal profile, a fixed source region and varied temperature difference, the rate is increased far $2\;{\leq}\;Ar\;{\leq}\;3$, and remains nearly unchanged for $3\;{\leq}\;Ar\;{\leq}\;5$.

Three-Dimensional Automated Crystal Orientation and Phase Mapping Analysis of Epitaxially Grown Thin Film Interfaces by Using Transmission Electron Microscopy

  • Kim, Chang-Yeon;Lee, Ji-Hyun;Yoo, Seung Jo;Lee, Seok-Hoon;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • Due to the miniaturization of semiconductor devices, their crystal structure on the nanoscale must be analyzed. However, scanning electron microscope-electron backscatter diffraction (EBSD) has a limitation of resolution in nanoscale and high-resolution electron microscopy (HREM) can be used to analyze restrictive local structural information. In this study, three-dimensional (3D) automated crystal orientation and phase mapping using transmission electron microscopy (TEM) (3D TEM-EBSD) was used to identify the crystal structure relationship between an epitaxially grown CdS interfacial layer and a $Cu(In_xGa_{x-1})Se_2$ (CIGS) solar cell layer. The 3D TEM-EBSD technique clearly defined the crystal orientation and phase of the epitaxially grown layers, making it useful for establishing the growth mechanism of functional nano-materials.

Use of Wet Chemical Method to Prepare β Tri-Calcium Phosphates having Macro- and Nano-crystallites for Artificial Bone

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.670-675
    • /
    • 2016
  • Calcium phosphate crystallites were prepared by wet chemical method for use in artificial bone. In order to obtain ${\beta}$-tricalcium phosphate (TCP), nano-crystalline calcium phosphate (CaP) was precipitated at $37^{\circ}C$ and at $pH5.0{\pm}0.1$ under stirring using highly active $Ca(OH)_2$ in DI water and an aqueous solution of $H_3PO_4$. The precipitated nano-crystalline CaP solution was kept at $90^{\circ}C$ for the growth of CaP crystallites. Through the growing process of CaP crystallites, we were able to obtain various sizes of rectangular CaP crystallites according to the crystal growing times. Dry nano-crystalline CaP powders at $37^{\circ}C$ were mixed with dry macro-crystalline CaP crystallites and the shaped mixture sample was fired at $1150^{\circ}C$ to make a ${\beta}-TCP$ block. Several tens of nm powders were uniformly coated on the surface, which was comprised of powders of several tens of ${\mu}m$, using a vibrator. The mixing ratio between the nanometer powders and the micrometer powders greatly affected the mechanical strength of the mixture block; the most appropriate ratio of these two materials was 50 wt% to 50 wt%. The sintered block showed improved mechanical strength, which was caused by the solid state interaction between the nano-crystalline ${\beta}-TCP$ and the macro-crystalline ${\beta}-TCP$.

Nano-porous Silicon Microcavity Sensors for Determination of Organic Fuel Mixtures

  • Pham, Van Hoi;Bui, Huy;Hoang, Le Ha;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Son;Ngo, Quang Minh
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.423-427
    • /
    • 2013
  • We present the preparation and characteristics of liquid-phase sensors based on nano-porous silicon multilayer structures for determination of organic content in gasoline. The principle of the sensor is a determination of the cavity-resonant wavelength shift caused by refractive index change of the nano-porous silicon multilayer cavity due to the interaction with liquids. We use the transfer matrix method (TMM) for the design and prediction of characteristics of microcavity sensors based on nano-porous silicon multilayer structures. The preparation process of the nano-porous silicon microcavity is based on electrochemical etching of single-crystal silicon substrates, which can exactly control the porosity and thickness of the porous silicon layers. The basic characteristics of sensors obtained by experimental measurements of the different liquids with known refractive indices are in good agreement with simulation calculations. The reversibility of liquid-phase sensors is confirmed by fast complete evaporation of organic solvents using a low vacuum pump. The nano-porous silicon microcavity sensors can be used to determine different kinds of organic fuel mixtures such as bio-fuel (E5), A92 added ethanol and methanol of different concentrations up to 15%.

Synthesis and characterization of perovskite nano-sized (Pb, La)$TiO_3$ powder using mechano chemical process (기계화학공정을 이용한 Perovskite 구조의 (Pb, La)$TiO_3$ 나노 분말 합성 및 특성)

  • Lim, Bo-Ra-Mi;Yang, Jae-Kyo;Lee, Dong-Suk;Noh, Tae-Hyung;Seo, Jung-Hye;Lee, Youn-Seoung;Kim, Hee-Taik;Choa, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.200-204
    • /
    • 2008
  • Mechano Chemical Process (MCP) skips the calcinations steps at an intermediate temperature that is always required in the conventional solid-state reaction because forming phase from raw powder is activated by mechanical energy. In this study, we prepared (Pb, La)$TiO_3$ nanopowder with perovskite structure by only high energy MCP. Especially, the PLT nanopowder was synthesized without any thermal treatment using oxides, not salts as raw powder. This process is also very simple due to dry milling method, unnecessary to dry of powder. The oxide powder was milled up to 12 hr at intervals of an hour using MCP and the pure PLT phase of perovskite structure was formed after milling time of 3 hr. And the average particle size was 20 nm with narrow distribution after milling time of 3 hr from raw powder of several $\mu m$ with inhomogeneous distribution.

Structural and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates (산소와 수소 플라즈마로 처리한 사파이어 기판 위에 성장된 ZnO 박막의 구조적.광학적 특성)

  • Lee, S.K.;Kim, J.Y.;Kwack, H.S.;Kwon, B.J.;Ko, H.J.;Yao, Takafumi;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.463-467
    • /
    • 2007
  • Structure and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates by plasma-assisted molecular beam epitaxy (denoted as samples A and B, respectively) have been investigated by various techniques. The crystal quality and structural properties of the surface for the ZnO epilayers were investigated by high-resolution X-ray diffraction and atomic force microscope. For investigating the optical properties of excitonic transition of ZnO, we carried out photoluminescence experiments as a function of temperature. The free exciton, bound exciton emission and their phonon replicas were investigated as a function of temperature from 10 to 300 K, and the intensity of excitonic PL peak emission from the sample A is found to be higher than that of sample B. From the results, we found that sample A has better crystal structure quality and optical properties as compared to sample B. The number of oxygen vacancies may be decreased in sample A, resulting in an enhancement of the crystal quality and a higher intensity of excitonic emission band as compared to sample B.

Formation of amorphous Ga2O3 thin films on Ti metal substrates by MOCVD and characteristics of diodes (MOCVD에 의한 Ti 금속 기판 위의 비정질 Ga2O3 박막 형성과 다이오드 특성)

  • Nam Jun Ahn;Jang Beom An;Hyung Soo Ahn;Kyoung Hwa Kim;Min Yang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.125-131
    • /
    • 2023
  • Ga2O3 thin films were deposited on Ti substrates using metal organic chemical vapor deposition (MOCVD) at temperatures ranging from 350 to 500℃. Lower deposition temperatures were chosen to minimize thermal deformation of the Ti substrate and its impact on the Ga2O3 film. Film surfaces tended to become rough at temperatures below 500℃ due to three-dimensional growth, but the film formed at 500℃ had the most uniform surface. All deposited films were amorphous in structure. Vertical Schottky diodes were fabricated and I-V and C-V measurements were performed. I-V measurements showed higher operating voltages compared to a typical SBD for films grown at different temperatures. The sample grown at 500℃, which had the most uniform surface, exhibited the lowest operating voltage. Higher growth temperatures resulted in higher capacitance values according to C-V measurements.

Ground-based model study for spaceflight experiments under microgravity environments on thermo-solutal convection during physical vapor transport of mercurous chloride

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.256-263
    • /
    • 2007
  • For $P_B=50Torr,\;P_T=5401Torr,\;T_S=450^{\circ}C,\;{\Delta}T=20K$, Ar=5, Pr=3.34, Le=0.01, Pe=4.16, Cv=1.05, adiabatic and linear thermal profiles at walls, the intensity of solutal convection (solutal Grashof number $Grs=7.86{\times}10^6$) is greater than that of thermal convection (thermal Grashof number $Grt=4.83{\times}10^5$) by one order of magnitude, which is based on the solutally buoyancy-driven convection due to the disparity in the molecular weights of the component A ($Hg_2Cl_2$) and B (He). With increasing the partial pressure of component B from 20 up to 800 Torr, the rate is decreased exponentially. It is also interesting that as the partial pressure of component B is increased by a factor of 2, the rate is approximately reduced by a half. For systems under consideration, the rate increases linearly and directly with the dimensionless Peclet number which reflects the intensity of condensation and sublimation at the crystal and source region. The convective transport decreases with lower g level and is changed to the diffusive mode at $0.1g_0$. In other words, for regions in which the g level is $0.1g_0$ or less, the diffusion-driven convection results in a parabolic velocity profile and a recirculating cell is not likely to occur. Therefore a gravitational acceleration level of less than $0.1g_0$ can be adequate to ensure purely diffusive transport.

Property and Microstructure Evaluation of Pd-inserted Nickel Monosilicides (Pd 삽입 니켈모노실리사이드의 물성과 미세구조 변화)

  • Yoon, Kijeong;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • A composition consisting of 10 nm-Ni/1 nm-Pd/(30 nm or 70 nm-poly)Si was thermally annealed using rapid thermal for 40 seconds at $300{\sim}1100^{\circ}C$ to improve the thermal stability of conventional nickel monosilicide. The annealed bilayer structure developed into $Ni(Pd)Si_x$, and the resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness were investigated. The silicide, which formed on single crystal silicon, could defer the transformation of $NiSi_2$, and was stable at temperatures up to $1100^{\circ}C$. It remained unchanged on polysilicon substrate compared with the sheet resistance of conventional nickel silicide. The silicides annealed at $700^{\circ}C$, formed on single crystal silicon and 30 nm polysilicon substrates exhibited 30 nm-thick uniform silicide layers. However, silicide annealed at $1,000^{\circ}C$ showed preferred and agglomerated phase. The high resistance was due to the agglomerated and mixed microstructures. Through X-ray diffraction analysis, the silicide formed on single crystal silicon and 30 nm polysilicon substrate, showed NiSi phase on the entire temperature range and mixed phases of NiSi and $NiSi_2$ on 70 nm polysilicon substrate. Through scanning probe microscope (SPM) analysis, we confirmed that the surface roughness increased abruptly until 36 nm on 30 nm polysilicon substrate while not changed on single crystal and 70 nm polysilicon substrates. The Pd-inserted nickel monosilicide could maintain low resistance in a wide temperature range and is considered suitable for nano-thick silicide processing.