• Title/Summary/Keyword: Nano-colloid

Search Result 64, Processing Time 0.023 seconds

Evaluation of Cu nano-colloid prepared by electrical wire explosion in liquid phase (액중 전기선폭발법으로 제조된 구리 나노콜로이드의 특성 평가)

  • Yoon, Jae-Cheol;Yang, Sang Sun;Yu, Ji-Hun
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.37-46
    • /
    • 2010
  • Cu nano-colloid was prepared by wire electric explosion process under de-mineralized water and anhydrous ethanol. To control the properties of Cu nano-colloid, experimental conditions such as diameter of Cu wire and applied voltage were changed. The optimal Cu nano-colloid was prepared when the 0.1mm diameter of Cu wire with the applied voltage of 2000 V was used. The shape of Cu particles in colloid was spherical and the XRD result revealed that the phase of Cu particles was cubic phase. About 20nm Cu nanoparticles with high crystallinity were successfully prepared using wire explosion process under anhydrous ethanol and they showed more than 100 hours dispersion stability.

Development of the Nanofluidic Filter and Nanopore Micromixer Using Self-Assembly of Nano-Spheres and Surface Tension (나노구체의 자기조립 성질과 표면장력을 이용한 나노유체필터 및 나노포어 마이크로믹서)

  • Seo, Young-Ho;Choi, Doo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.910-914
    • /
    • 2007
  • We present a simple and an inexpensive method for the fabrication of a nano-fluidic filter and a nano-pore micromixer using self-assembly of nano-spheres and surface tension. Colloid-plug was formed by surface tension of liquid in a microchannel to fabricate nanofluidic filter. When colloid is evaporated, nano-spheres in a colloid are orderly stacked by a capillary force. Orderly stacked nano-spheres form 3-D nano-mesh which can be used as a mesh structure of a fluidic filter. We used silica nano-sphere whose diameter is $567{\pm}85nm$, and silicon micro-channel of $50{\mu}m$-diameter. Fabricated nano-fluidic filter in a micro-channel has median pore diameter of 158nm which was in agreement with expected diameter of the nano-pore of $128{\pm}19nm$. A nano-pore micromixer consists of $200\;{\mu}m-wide,\;100\;{\mu}m-deep$ micro-channel and self-assembled nano-spheres. In the nano-pore micromixer, two different fluids had no sooner met together than two fluids begin to mix at wide region. From the experimental study, we completely apply self-assembly of nano-spheres to nano-fluidic devices.

Preparation of ZnO Thin Film by Electrophoretic Deposition(EPD)

  • Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The electrophoretic deposition(EPD) of ZnO nano-sized colloids is investigated by changing the colloid number concentration, applied force, and deposition time. The change of the colloid size in a suspension was examined by the different colloid number concentrations (N = $3.98{\times}10^{15}$, N = $3.98{\times}10^{14}$, and N = $3.98{\times}10^{13}$) with an increase of the deposition time and applied forces. Deposition behavior was investigated by changing the applied fields (from DC 5 V to 50 V) and the deposition time (5 min to 25 min). The surface microstructures of the as-deposited films were investigated by SEM. The dried films were sintered from $850^{\circ}C$ to $1,050^{\circ}C$ for 2 h and then the microstructures were also explored by SEM. The agglomeration rate was enhanced by increasing the colloid number concentration of colloids. Colloid number concentration in a suspension must be rapidly decreased at higher values of the electric field. ZnO nano-sized colloids had the highest zeta potential value of over -28 mV in methanol. A homogeneous microstructure was obtained at colloid number concentration of N = $3.98{\times}10^{13}$, applied DC field of 5 V/cm and 15 min of deposition time at an electrode distance of 1.5 cm. Under these conditions, the deposited films were sintered at $850^{\circ}C$ and $1,050^{\circ}C$ for 2 h. The results show a typical pore-free surface morphology of a uniform thickness of 400 nm under these experimental conditions.

Microstructure and Synthesis of Nano Palladium Spot Coated Activated Carbon Powders by Hydrothermal Attachment Method (수열흡착법을 이용한 나노팔라듐 점코팅 활성탄 분말의 합성 및 미세조직)

  • Kim, Hyeong Chul;Han, Jae Kil
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.424-428
    • /
    • 2012
  • Nano Pd spot-coated active carbon powders were synthesized by a hydrothermal-attachment method (HAA) using PVP capped Pd colloid in a high pressure bomb at $250^{\circ}C$, 450 psi, respectively. The PVP capped Pd colloid was synthesized by the precipitation-redispersion method. PVP capped Pd nano particles showed the narrow size distribution and their particle sizes were less than 8nm in diameter. In the case of nano Pd-spot coated active carbon powders, nano-sized Pd particles were adhered in the active carbon powder surface by HAA method. The component of Pd was homogeneously distributed on the active carbon surface.

Analysis of Colloid Thrusters for Nano-satellite Propulsion (나노인공위성 추진용 콜로이드 추력기 해석)

  • Park, Kun-Joong;Kim, Ho-Young;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.175-178
    • /
    • 2007
  • The mode transition from cone-jet to dripping in colloid thruster operation has been analytically investigated. The transition has been predicted by the dynamic behavior of a liquid drop at the tip of the cone-jet. Conservation laws are applied to determine the upward motion of the drop, and an instability model of electrified jets is used to determine the jet breakup. Finally, for the first time, the analysis enables prediction of the transition in terms of the Weber number and electric Bond number. The predictions are in good agreement with experimental data.

  • PDF

Wear Characteristics According of Heat Treatment of Si3N4 with Different Amounts of SiO2 Nano-Colloid (SiO2 나노 콜로이드 량이 다른 Si3N4의 열처리에 따른 마모 특성)

  • Ahn, Seok Hwan;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1117-1123
    • /
    • 2014
  • This study sintered $Si_3N_4$ with different amounts of $SiO_2$ nano-colloid. The surface of a mirror-polished specimen was coated with $SiO_2$ nano-colloid, and cracks were healed when the specimen was treated at a temperature of 1273 K for 1 h in air. Wear specimen experiments were conducted after heat treatments for 10 min at 1073, 1273, and 1573 K. The heat-treated surface that was coated with the $SiO_2$ nano-colloid was slightly rougher than the noncoated surface. The oxidation state of the surface according to the heat treatment temperature showed no correlation with the surface roughness. Moreover, the friction coefficient, wear loss, and bending strength were not related to the surface roughness. $Si_3N_4$ exhibited an abrasive wear behavior when SKD11 was used as an opponent material. The friction coefficient was proportional to the wear loss, and the bending strength was inversely proportional to the friction coefficient and wear loss. The friction coefficient and wear loss increased with increasing amounts of the $SiO_2$ nanocolloid. In addition, the friction coefficient was slightly increased by increasing the heat treatment temperature.

Synthesis of AlO(OH) Nano Colloids from γ-Al2O3 via Reversible Process (γ-Al2O3로부터 가역과정을 경유한 AlO(OH) 나노콜로이드의 합성)

  • Cho, Hyun-Ran;Kim, Sook-Hyun;Park, Byung-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.288-294
    • /
    • 2009
  • The platelet AlO(OH) nano colloids were prepared by hydrothermal reaction of the $\gamma-Al_2O_3$ obtained with dehydration of $\gamma$-AlO(OH) and dilute $CH_3COOH$ solution. In hydrothermal reaction process, reversible reaction was accompanied between $\gamma-Al_2O_3$ and AlO(OH), and hydrothermal reaction temperature, hydrothermal reaction time and $CH_3COOH$ concentration had an effect on the crystal structure, surface chemical property, surface area, pore characteristics and crystal morphology of the AlO(OH) nano colloid particles. In this study, it was investigated to the hydrothermal reaction condition of the AlO(OH) nano colloid for using catalyst support, heat resisting agent, adsorbents, binder, polishing agent and coating agent. The crystal structure, surface area, pore volume and pore size of the platelet AlO(OH) nano colloids were investigated by XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method in liquid nitrogen temperature.

A Study on Performance of Building Material using nano-hydrated Aluminum for Fire-Resistance (나노 수산화알루미나를 이용한 건설소재의 내화성능 개선연구)

  • Jo, Byung-Wan;Park, Jong-Bin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.826-829
    • /
    • 2004
  • An increasing interest in fire safety engineering can currently be identified in Korea and overseas. The fire-resistant characteristics of spray coating material for fire protection with or without nano $Al(OH)_3$ colloid has been experimentally investigated and the results are presented in this paper. The fire-resistance characteristics of spray coating material with nano $Al(OH)_3$ were superior to those without $Al(OH)_3$. Especially, spray coating material with nano material showed that thermal characteristic in the early days was remarkably excellent.

  • PDF

What is Magnetic Fluid\ulcorner (자성 유체의 특성 및 응용)

  • Lee, Hyo-Suk
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.264-268
    • /
    • 2002
  • Magnetic fluid is a very stable colloid that is attracted by magnetic force as wholly. The magnetic fluids is composed with 10 nm magnetic materials such as magnetite, iron etc., which is dispersed homogeneously in solvent by coating surfactant on their surface. Also this colloid is not separated into magnetic particles and solvent even under magnetic field, centrifugal force, gravity. Due to these properties, the magnetic fluids is used in high vacuum seal, exclusion seal, damper, etc. I would like to introduce the specific properties and applications of the magnetic fluids.