• Title/Summary/Keyword: Nano-coating

Search Result 770, Processing Time 0.032 seconds

Effect of Deposition Temperature on the Property of Pyrolytic SiC Fabricated by the FBCVD Method (유동층 화학기상증착법을 이용하여 제조된 열분해 탄화규소의 특성에 미치는 증착온도의 영향)

  • Kim, Yeon-Ku;Kim, Weon-Ju;Yeo, SungHwan;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.434-440
    • /
    • 2014
  • Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at $1500-1650^{\circ}C$ has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at $1500^{\circ}C$ obtains nearly stoichiometric composition, the composition of the SiC layer coated at $1300-1400^{\circ}C$ shows discrepancy from stoichiometric ratio(1:1). $3-7{\mu}m$ grain size of SiC layer coated at $1500^{\circ}C$ is decreased to sub-micrometer (< $1{\mu}m$) $-2{\mu}m$ grain size when coated at $1400^{\circ}C$, and further decreased to nano grain size when coated at $1300-1350^{\circ}C$. Moreover, the high density of SiC layer (${\geq}3.19g/cm^3$) which is easily obtained at $1500^{\circ}C$ coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.

Superhydrophobic nanostructured non-woven fabric using plasma modification

  • Shin, Bong-Su;Lee, Kwang-Reoul;Kim, Ho-Young;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.320-320
    • /
    • 2011
  • We describe fabrication of superhydrophobic surface on non-woven fabric (NWF) having nano-hairy structures and a hydrophobic surface coating. Oxygen plasma was irradiated on NWF for nano-texuring and a precursor of HMDSO (Hexamethydisiloxane) was introduced as a surface chemical modification for obtaining superhydrophobicity using 13.56 MHz radio frequency-Plasma Enhanced Chemical Vapor Deposition (rf-PECVD). O2 plasma treatment time was varied from 1 min to 60 min at a bias voltage of 400V, which fabricated pillar-like structures with diameter of 30 nm and height of 150 nm on NWF. Subsequently, hydrophobic coating using hexamethyldisiloxane vapor was deposited with 10 nm thickness on NWF substrate at a bias voltage of 400 V. We evaluate superhydrophobicity of the modified NWF with sessile drop using goniometer and high speed camera, in which aspect ratio of nanohairy structures, contact angle and contact angle hysteresis of the surfaces were measured. With the increase of aspect ratio, the wetting angle increased from $103^{\circ}$ to $163^{\circ}$, and the contact angle hysteresis decreased dramatically below $5^{\circ}$. In addition, we had conducted experiment for nucleation and condensation of water via E-SEM. During increasing vapor pressure inside E-SEM from 3.7 Torr to over 6 Torr which is beyond saturation point at $2^{\circ}C$, we observed condensation of water droplet on the superhydropobic NWF. While the condensation of water on oxygen plasma treated NWF (superhydrophilic) occurred easily and rapidly, superhydrophobic NWF which was fabricated by oxygen and HMDSO was hardly wet even under supersaturation condition. From the result of wetting experiment and water condensation via E-SEM, it is confirmed that superhydrophobic NWF shows the grate water repellent abilities.

  • PDF

Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

  • Ranot, Mahipal;Shinde, K.P.;Oh, Y.S.;Kang, S.H.;Jang, S.H.;Hwang, D.Y.;Chung, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.40-43
    • /
    • 2017
  • Carbon coating approach is used to prepare carbon-doped $MgB_2$ bulk samples using low-cost naphthalene ($C_{10}H_8$) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at $120^{\circ}C$ and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for $MgB_2$ doped with carbon. As compared to un-doped $MgB_2$, a systematic enhancement in $J_c(H)$ properties with increasing carbon doping level was observed for naphthalene-derived C-doped $MgB_2$ samples. The substantial enhancement in $J_c$ is most likely due to the incorporation of C into $MgB_2$ lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

Effect of Iodine-coated Bipolar Plates on the Performance of a Polymer Exchange Membrane (PEM) Fuel Cell (고분자 전해질 막 연료전지에서의 아이오딘이 코팅된 분리판의 성능 효과)

  • Kim, Taeeon;Juon, Some;Cho, Kwangyeon;Shul, Yonggun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • Polymer exchange membrane (PEM) fuel cells have multifunctional properties, and bipolar plates are one of the key components in these fuel cells. Generally, a bipolar plate has a gas flow path for hydrogen and oxygen liberated at the anode and cathode, respectively. In this study, the influence of iodine applied to a bipolar plate was investigated. Accordingly, we compared bipolar plates with and without iodine coating, and the performances of these plates were evaluated under operating conditions of $75^{\circ}C$ and 100% relative humidity. The membrane and platinum-carbon layer were affected by the iodine-coated bipolar plate. Bipolar plates coated with iodine and a membrane-electrode assembly (MEA) were investigated by electron probe microanalyzer (EPMA) and energy-dispersive x-ray spectroscopy (EDS) analysis. Polarization curves showed that the performance of a coated bipolar plate is approximately 19% higher than that of a plate without coating. Moreover, electrochemical impedance spectroscopy (EIS) analysis revealed that charge transfer resistance and membrane resistance decreased with the influence of the iodine charge transfer complex for fuel cells on the performance.

Effect of ALD-Al2O3 Passivation Layer on the Corrosion Properties of CrAlSiN Coatings (ALD-Al2O3 보호층이 적용된 CrAlSiN 코팅막의 내부식성 특성에 관한 연구)

  • Wan, Zhixin;Lee, Woo-Jae;Jang, Kyung Su;Choi, Hyun-Jin;Kwon, Se Hun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.339-344
    • /
    • 2017
  • Highly corrosion resistance performance of CrAlSiN coatings were obtained by applying ultrathin $Al_2O_3$ thin films using atomic layer deposition (ALD) method. CrAlSiN coatings were prepared on Cr adhesion layer/SUS304 substrates by a hybrid coating system of arc ion plating and high power impulse magnetron sputtering (HiPIMS) method. And, ultrathin $Al_2O_3$ passivation layer was deposited on the CrAlSiN/Cr adhesion layer/SUS304 sample to protect CrAlSiN coatings by encapsulating the whole surface defects of coating using ALD. Here, the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray spectrometry (EDX) analysis revealed that the ALD $Al_2O_3$ thin films uniformly covered the inner and outer surface of CrAlSiN coatings. Also, the potentiodynamic and potentiostatic polarization test revealed that the corrosion protection properties of CrAlSiN coatings/Cr/SUS304 sample was greatly improved by ALD encapsulation with 50 nm-thick $Al_2O_3$ thin films, which implies that ALD-$Al_2O_3$ passivation layer can be used as an effect barrier layer of corrosion.

Fabrication of $TiO_2$-silver transparent thin films low-e coated on glass substrate by ink-jet printing (잉크젯 프린팅을 이용한 low-e $TiO_2$-silver 투명박막형성)

  • Yoon, Cho-Rong;Oh, Hyo-Jin;Lee, Nam-Hee;Guo, Yupeng;Kim, Byung-Whan;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.511-511
    • /
    • 2007
  • Low-emissivity (low-e) coatings with visible transparency have attracted increased interest m reducing heat radiation loss through window panes from ecological and sustainable aspects. $TiO_2$-silver transparent thin films for low-e have good properties for UV and IR blocking as well as photocatalyst compared to that with commercial UV blocking films such as fluorine doped oxide (FTO), antimony doped tin oxide (ATO), etc. In this study, transparent $TiO_2$-silver thin films were prepared by successive ink-jet printing of commercial nano silver and $TiO_2$ sol. The $TiO_2$ sol, as ink for ink-jet printing, were synthesized by hydrothermal process in the autoclave externally pressurized with $N_2$ gas of 200 bar at $120^{\circ}C$ for 10 hrs. The synthesized $TiO_2$ sols were all formed with brookite phase and their particle size was several to 30 nm. At first nano sized silver sol was coated on glass substrate, after that $TiO_2$ sol was coated by ink-jet printing. With increasing coating thickness of $TiO_2$-silver multilayer by repeated ink-jet coating, the absorbance of UV region (under 400nm) and IR region (over 700nm) also increase reasonably, compared to that with commercial UV blocking films.

  • PDF

Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes (신축성 금속 나노선 압저항 전극 기반 로젯 스트레인 센서)

  • Kim, Kang-Hyun;Cha, Jae-Gyeong;Kim, Jong-Man
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.835-843
    • /
    • 2018
  • In this work, we report a delta rosette strain sensor based on highly stretchable silver nanowire (AgNW) percolation piezoresistors. The proposed rosette strain sensors were easily prepared by a facile two-step fabrication route. First, three identical AgNW piezoresistive electrodes were patterned in a simple and precise manner on a donor film using a solution-processed drop-coating of the AgNWs in conjunction with a tape-type shadow mask. The patterned AgNW electrodes were then entirely transferred to an elastomeric substrate while embedding them in the polymer matrix. The fabricated stretchable AgNW piezoresistors could be operated at up to 20% strain without electrical or mechanical failure, showing a maximum gauge factor as high as 5.3, low hysteresis, and high linearity ($r^2{\approx}0.996$). Moreover, the sensor responses were also found to be highly stable and reversible even under repeated strain loading/unloading for up to 1000 cycles at a maximum tensile strain of 20%, mainly due to the mechanical stability of the AgNW/elastomer composites. In addition, both the magnitude and direction of the principal strain could be precisely characterized by configuring three identical AgNW piezoresistors in a delta rosette form, representing the potential for employing the devices as a multidimensional strain sensor in various practical applications.

A Study on the Application of Adsorption Function in Metal Filter for the Removal of VOCs in Underground Facilities (지하시설 VOCs 제거를 위한 메탈 필터의 흡착기능부여 연구)

  • Jang, Younghee;Lee, Sang Moon;Yang, Heejae;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.633-638
    • /
    • 2019
  • Indoor air quality underground facilities are not equipped for the removal of volatile organic compounds (VOCs) and they are usually treated by diffusion methods such as ventilation. In this study, an adsorption filter was prepared using various coating methods such as carbon nano fiber (CNF) and dip coating. As a result, the adsorption performance was improved by 2 to 20 times or more compared to that of using the metal foam support. This is maybe due to the enhancement of pore distribution which was confirmed by SEM. In addition, the adsorption performance was 13.95 mg/g by adding lignin, and also an average adsorption performance of 13.25 mg/g was maintained after washing indicating that a highly durable adsorption filter material was prepared. It can be suggested that the developed adsorption filter material can be a potential solution that can fundamentally control VOCs, not via the concentration reduction of mechanical ventilation in underground facilities.

Hardness and Oxidation Resistance of Ti0.33Al0.67N/CrN Nano-multilayered Superlattice Coatings

  • Ahn, Seung-Su;Oh, Kyung-Sik;Chung, Tai-Joo;Park, Jong-Keuk
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.49-55
    • /
    • 2019
  • $Ti_{0.33}Al_{0.67}N/CrN$ nano-multilayers, which are known to have excellent wear resistance, were prepared using an unbalanced magnetron sputter to have various periods of 2-5 nm. $Ti_{0.33}Al_{0.67}N$ had a hexagonal structure in a single layer, but converted to a cubic structure by forming a multilayer with CrN, which has a cubic structure. Thus, $Ti_{0.33}Al_{0.67}N$ formed a superlattice in the multilayer. The $Ti_{0.33}Al_{0.67}/CrN$ multilayer with a period of 2.5 nm greatly exceeded the hardness of the $Ti_{0.33}Al_{0.67}N$ and the CrN single layer, reaching 39 GPa. According to the low angle X-ray diffraction results, the $Ti_{0.33}Al_{0.67}N/CrN$ multilayer maintained its as-coated structure to a temperature as high as $700^{\circ}C$ and exhibited hardness of 30 GPa. The thickness of the oxide layer of the $Ti_{0.33}Al_{0.67}N/CrN$ multilayered coating was less than one-tenth of those of the single layers. Thus, $Ti_{0.33}Al_{0.67}N/CrN$ multilayered coating had hardness and oxidation resistance far superior to those of its constituent single layers.

Hydrophobic Organic/Inorganic Composite Films with 3D Hierarchical Nanostructured Surfaces (3D 계층적 나노구조화된 표면을 갖는 소수성 유/무기 복합 필름)

  • Seo, Huijin;Ahn, Jinseong;Park, Junyong
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.264-268
    • /
    • 2021
  • In this study, we propose a method for fabricating hydrophobic coatings/films with three-dimensional (3D) hierarchical nanostructured organic/inorganic composite surfaces. An epoxy-based, large-area 3D ordered nanoporous template is first prepared through an advanced photolithography technique called Proximity-field nanoPatterning (PnP). Then, a hierarchically structured surface is generated by densely impregnating the template with silica nanoparticles with an average diameter of 22 nm through dip coating. Due to the coexisting micro- and nano-scale roughness on the surface, the fabricated composite film exhibits a higher contact angle (>137 degrees) for water droplets compared to the reference samples. Therefore, it is expected that the materials and processes developed through this study can be used in various ways in the traditional coating/film field.