• Title/Summary/Keyword: Nano-coating

Search Result 774, Processing Time 0.031 seconds

Electrochemical Characteristics of Ultra Battery Anode Material using the Nano Pb/AC for ISG (나노 납/활성탄을 사용한 ISG용 울트라 전지 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.593-599
    • /
    • 2017
  • In order to enhance ultra battery performances, the electrochemical characteristics of nano Pb/AC anode composite was investigated. Through nano Pb adsorption onto activated carbon, nano Pb/AC was synthesized and it was washed under vacuum process. The prepared anode materials was analysed by SEM, BET and EDS. The specific surface area and average pore size of nano Pb/AC composite were $1740m^2/g$ and 1.95 nm, respectively. The negative electrode of ultra battery was prepared by nano Pb/AC dip coating on lead plate. The electrochemical performances of ultra battery were studied using $PbO_2$ (the positive electrode) and prepared nano Pb/AC composite (the negative electrode) pair. Also the electrochemical behaviors of ultra battery were investigated by charge/discharge, cyclic voltammetry, impedance and rate capability tests in 5 M $H_2SO_4$ electrolyte. The initial capacity and cycling performance of the present nano Pb/AC ultra battery were improved with respect to the lead battery and the AC-coated lead battery. These experimental results indicate that the proper addition of nano Pb/AC into the negative electrode can improve the discharge capacity and the long term cycle stability and remarkably suppress the hydrogen evolution reaction on the negative electrode.

A Literature Review on Nano-Modified Implant Surfaces (나노구조 표면에 관한 문헌고찰)

  • Park, Go-Woon;Cha, Min-Sang;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • The nano-surface modification techniques could be classified; internal modifications which enhance surface roughness and porosity in nano level and external modifications as nano particle coating. Nano-modified implant surface has various morphograpies such as nanotube, nanopit, nanonodule and polymorphic structures. Creating surface depends upon preparation method and material, however, there is no standard preparation technique not yet. The nano-modified surfacet is electrochemically stable comparing with the surface modified in micron level. Nano-modified surface has little cytotoxicity, stimulates osteoblast proliferation and differentiation. Moreover, it decreases soft tissue intervention by interrupting the proliferation of fibroblast. Nanostructure has similar size and shape with cells and proteins, consequently leads to good biocompatibility and enhanced osseointegration. However, the actual effect in vivo is limited, due to the distance of effect. Even if nano-modified surface has antibiotic property due to photocatalysis, short duration time makes clinical application questionable. Further investigations should focus on the optimal nano-modified surface, which has many potentials.

ZnO 나노 입자가 분산 된 Resin을 이용한 굴절률 조절 및 광 산란 패턴 형성을 통한 비정질 실리콘 박막태양전지의 효율 향상

  • Ko, Bit-Na;Kim, Jae-Hyeon;Kim, Gyu-Tae;Sin, Ju-Hyeon;Jeong, Pil-Hun;Chu, So-Yeong;Choe, Hak-Jong;Hyeon, Seok;Lee, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.295-295
    • /
    • 2014
  • 일반적으로 박막 태양전지의 효율은 박막 종류에 따른 광 흡수율에 의해 결정되며, 이는 증착한 박막의 두께에 의해 결정된다. 증착한 박막의 두께가 두꺼워질수록 광 흡수율은 증가하지만, 박막 두께가 지나치게 두꺼워지면 열화 현상으로 인한 모듈의 효율 감소가 생기므로 적절한 박막의 두께가 요구된다. 특히 a-Si:H의 경우 가시광 영역에서 높은 흡수계수를 가지고 있어서 얇은 박막 두께로도 태양전지의 제작이 가능하지만, 동일한 박막 두께에서 효율을 더욱 향상시키기 위한 다양한 광 포획 기술에 대한 연구가 많이 진행 되고 있다. 본 연구에서는 자외선을 이용한 nano-imprint lithography 기술을 이용하여 a-Si:H 태양전지의 유리기판 위에 pattern을 삽입하여 광 산란 효과를 향상 시키고자 하였다. 또한 유리기판의 굴절률 (n=1.5)과 투명전극의 굴절률 (n=1.9)의 중간 값을 갖는 ZnO nanoparticles (n=1.7)이 분산 된 imprinting resin을 사용함으로써 점진적으로 굴절률을 변화시켜, 최종적으로 a-Si:H 층까지의 광 투과율을 높이고자 하였다. 제작한 기판의 종류는 다음과 같다. 첫 번째 기판으로는 유리기판 위에 ZnO nanoparticles이 분산 된 imprinting resin을 spin-coating 하여 점진적인 굴절률의 변화에 의한 투과도 향상을 확인하고자 하였다. 두 번째 기판으로는 규칙적인 배열을 갖는 micro 크기의 패턴을 형성하였다. 마지막으로는 불규칙한 배열을 갖는 nano 크기와 micro 크기가 혼재 된 패턴을 형성하여 투과도 향상과 동시에 빛의 산란을 증가시키고자 하였다. 후에 이 세가지 종류를 기판으로 사용하여 a-Si:H 기반의 박막 태양전지를 제작하였다. 먼저 제작한 박막 태양전지용 기판의 광학적 전기적 특성을 분석하였다. 유리 기판 위에 형성한 패턴에 의한 roughness 변화를 확인하기 위해 atomic force microscopy (AFM)를 이용하여 시편의 표면을 측정하였다. 또한 제작한 유리 기판 위에 투명 전극층을 형성 후, 이로 인한 전기적 특성의 변화를 확인하기 위해 hall measurement system을 이용하여 sheet resistance, carrier mobility, carrier concentration 등의 특성을 측정하였다. 또한, UV-visible photospectrometer 장비를 이용하여 각 공정마다 시편의 광학적 특성(투과도, 반사도, 산란도, 흡수도 등)을 측정하였고, 최종적으로 제작한 박막 태양전지의 I-V 특성과 외부양자효율을 측정하여 태양전지의 효율 변화를 확인하였다. 그 결과 일반적인 유리에 기판에 제작된 a-Si:H 기반의 박막 태양전지에 비해, ZnO nanoparticles이 분산 된 imprinting resin을 spin-coating 하여 점진적인 굴절률 변화를 준 것만으로도 약 12%의 태양전지 효율이 증가하였다. 또한, micro 크기의 패턴과 nano-micro 크기가 혼재된 패턴을 형성한 경우 일반적인 유리를 사용한 경우에 비해 각각 27%, 36%까지 효율이 증가함을 확인하였다.

  • PDF

Studies on the Preparation of Nanofiltration Membrane for Ultra-low Pressure Application through Hydrophilization of Porous PVDF Membrane Using Inorganic Salts (무기염을 이용한 다공성 PVDF 고분자막의 친수화를 통한 초저압용 나노여과막 제조 연구)

  • Park, Chan Jong;Cho, Eun Hye;Rhim, Ji Won;Cheong, Seong Ihl
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • To prepare the hollow fiber nanofiltration composite membranes, the poly(vinylidene fluoride) (PVDF) membrane was hydrophilized with $K_2Cr_2OH$ and $KMnO_4$ aqueous solutions. And then the composite membrane was synthesized on that membrane surfaces using interfacial polymerization with piperazine (PIP) and trimesoyl chloride (TMC). The resulting membranes were characterized in terms of the rejection and flux for NaCl, $CaSO_4$, $MgCl_2$ 100 ppm solution and 300 ppm of NaCl and $CaSO_4$ mixed solution by varying the coating time, drying time, and the concentration of the coating materials. As a result, the higher rejections were shown for $K_2Cr_2OH$ solutionas a hydrophilization material, and the flux was enhanced while the rejection reduced as the hydrophilization time is longer. Also, the rejection increased and the flux reduced as the concentrations of triethyl amine (TEA) and sodium lauryl sulfate (SLS) were higher. Typically, the rejection 50% and flux 40 LMH for NaCl 100 ppm solution, and the rejection 55% and flux 48 LMH for $CaSO_4$ 100 ppm solution were obtained for the PVDF hollow fiber composite membrane prepared with the conditions of PIP 2 wt% (Triethyl amine (TEA) 7 wt%, SLS 20 wt% mixed solution against PIP concentration) and TMC 0.1 wt%.

Preparation and Properties of $N^1,N^1,N^4,N^4$-Tetrakis(hydroxyethyl)cyclohexanetrans-1,4-dicarboxamide as a Crosslinker of Polyester Powder Coatings (폴리에스터계 분체도료용 경화제 $N^1,N^1,N^4,N^4$-Tetrakis(hydroxethyl) cyclohexane-trans-1,4-dicarboxamide의 제조 및 특성)

  • Jung, Hong-Ryun;Heo, Joon;Lee, Wan-Jin;Kim, Hyung Jin;Lim, Hyung Soo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.195-200
    • /
    • 2009
  • To develop a crosslinker for the polyester powder coatings, $N^1,N^1,N^4,N^4$-tetrakis(hydroxyethyl)cyclohexane-1,4-dicarboxamide (Cy-${\beta}-HAA$), incorporated with a cyclohexane ring within the main chain of commercial ${\beta}-hydroxyalkylamide$ (${\beta}-HAA$), was prepared from the amidation of dimethyl trans-1,4-cyclohexanedicarboxylate and diethanolamine in the presence of $NaOCH_3$, The structure of $Cy-{\beta}-HAA$ was confirmed by its NMR, FT-IR and ESI-MS spectra. $Cy-{\beta}-HAA$ was thermally more stable than ${\beta}-HAA$. When $Cy-{\beta}-HAA$ was used as a crosslinker for the polyester powder coatings, it provided the smooth coating surface and reduced the formation of pinholes in the coating surface with comparison with ${\beta}-HAA$.

Curing Behavior and Tensile Strength of Elastomeric Polyester and Polyvinylidene Fluoride for Automotive Pre-primed Coatings (자동차용 Pre-primed 적용을 위한 Polyester 및 Polyvinylidene Fluoride 도료의 경화거동과 인장강도 특성)

  • Hwang, Hyeon-Deuk;Moon, Je-Ik;Lee, Yong-Ju;Kim, Hyun-Joong;Hyun, Jin-Ho;Noh, Seung Man;Kang, Choong Yeol;Lee, Jae-Woo;Nam, Joon Hyun;Park, Jong Myung
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.155-161
    • /
    • 2009
  • The most upcoming technical issue of automotive coating is the compact coating process. Pre-primed coating is the outstanding technology eliminating electro-deposition and primer coating process. The main properties of pre-primed coating for automotive are flexibility, corrosion resistance, and weldability. Therefore, we synthesized the conventional polyester, elastomeric polyester and polyvinylidene fluoride resins and evaluated their properties to use as weldable pre-primed automotive coatings. As the results of flexibility and curing behavior, the elastomeric polyester coating was most appropriate to use for the pre-primed automotive coatings.

  • PDF

Characterization of Crack Healing of Si3N4 Ceramic Structures According to Crack Length and Coating Methods (균열 길이와 코팅방법에 따른 Si3N4의 균열 치유 특성)

  • Nam, Ki-Woo;Moon, Chang-Kwon;Park, Sang-Hyun;Eun, Kyung-Ki;Kim, Jong-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1715-1720
    • /
    • 2010
  • In this study, we analyzed the crack-healing characteristics of specimens; different crack lengths and coating methods of $Si_3N_4$ ceramic structures with long cracks were analyzed. Cracks with lengths of about $100-500\;{\mu}m$ were obtained using a Vickers indenter for a load of 24.5-98 N. In the case of a crack obtained by applying a load of 24.5 N, the crack-healed specimen with $SiO_2$ nanocolloid coating exhibited the highest bending strength, which was higher than that of a smooth specimen by 140%, but the bending strength of a crack-healed specimen that had a $SiO_2$ nanocolloid coating and originally had multiple cracks was lower than that of a smooth specimen. However, when compared to the cracked specimens, the bending strength of most specimens with multiple cracks increased slightly. On the basis of these results, the crack-healing characteristics of $Si_3N_4$ ceramic structures with multiple indentations were studied for different coating methods. The most effective coating method for long-crack specimens was hydrostatic pressure coating.

Improvement of Electrochemical Performance of LiFePO4 by Carbon Coating and Morphology Control into Porous Structure (LiFePO4/C의 carbon coating 방법 및 다공성 구조 형성에 의한 전기화학적 특성 개선)

  • Kong, Ki Chun;Ju, Jeh Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.229-236
    • /
    • 2014
  • In this study, the method to improve the electrochemical performance of $LiFePO_4$ by carbon coating and morphology control into porous structure was studied. The synthesis of $LiFePO_4$ was done by coprecipitation method by two step procedure. In the first step $FePO_4$ precursor was synthesized by coprecipitation method, followed by impregnation of lithium into the precursor at $750^{\circ}C$. The carbon coating was done by both physical and chemical coating processes. Using the physical coating process, the amount of coating layer was 6% and the capacity achieved was 125 mAh/g. In case of chemical coating process, the active material delivered 130~140 mAh/g, which is about 40% improvement of delivered capacity compared to uncoated $LiFePO_4$. For the morphology control into porous structure, we added nano particles of $Al_2O_3$ or $SiO_2$ into the active materials and formed the nanocomposite of ($Al_2O_3$ or $SiO_2$)/$LiFePO_4$. Between them, $SiO_2/LiFePO_4$ porous nanocomposite showed larger capacity of 132 mAh/g.

Influence of Subsurface Layer on the Indentation Damage Behavior of YSZ Thermal Barrier Coating Layers Deposited by Electron Beam Physical Vapor Deposition (전자 빔 물리적 증착(EB-PVD)법으로 코팅된 YSZ 열차폐층의 압흔손상 거동에 대한 하부층의 영향)

  • Heo, Yong-Suk;Park, Sang-Hyun;Han, In-Sub;Woo, Sang-Kuk;Jung, Yeon-Gil;Paik, Un-Gyu;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.549-555
    • /
    • 2008
  • The thermal barrier coating must withstand erosion when subjected to flowing gas and should also maintain good stability and mechanical properties while it must also protect the turbine component from high temperature, hot corrosion, creep, and oxidation during operation. In this study we investigated the influence of subsurface layer, $Al_2O_3$ or NiCrCoAIY bond coat layer, on the indentation damage behavior of YSZ thermal barrier coating layers deposited by electron beam physical vapor deposition (EB-PVD). The bond coat is deposited using different process such as air plasma spray (APS) or spray of high velocity oxygen fuel (HVOF) and the thickness is varied. Hertzian indentation technique is used to induce micro damages on the coated layer. The stress-strain behaviors are characterized by results of the indentation tests.

Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating (형상이 다른 나노입자 스프레이 코팅에 따른 탄소계 강화 유리섬유와 에폭시 수지간 계면강도 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Lee, En-Seon;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • Manufacture of nancomposites has simple process for developing nanocomposites due to the increasing applications using nanofillers. This work studied nanofiller coated glass fiber for reinforcing material with good wetting and conductivity and the morphology of nanofiller coated glass fiber was analyzed by FE-SEM. The durability of reinforced glass fiber was investigated with different shapes of nanofillers using sonication rinsing method. Fatigue test was performed to evaluate the adhesion of reinforcing interface and stability of nanofiller coating layer for single fiber reinforced composites. Apparent modulus and conductivity of nanofiller coating layer were evaluated to realize multifunctional of nanocomposites. Fiber type of nanofiller was better than plate type due to better cohesion between fiber and nanofillers. At last, the stability of fiber type nanofiller of coating layer has better durability and conductivity than plate type case.