• 제목/요약/키워드: Nano-biosensors

검색결과 47건 처리시간 0.093초

High sensitivity biosensor for mycotoxin detection based on conducting polymer supported electrochemically polymerized biopolymers

  • Dhayal, Marshal;Park, Gye-Choon;Park, Kyung-Hee;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.243.1-243.1
    • /
    • 2010
  • Devices based on nanomaterials platforms are emerging as a powerful tool for ultrasensitive sensors for the direct detection of biological and chemical species. In this talk, we will report the preparation and the full characterization of electrochemical polymerization of biopolymers platforms and nano-structure formation for electrochemical detection of enzymatic activity and toxic compound in electrolyte for biosensor applications. Formation of an electroactive polymer film of two different compounds has been quantified by observing new redox peak at higher potentials in cyclic voltammogram measurements. RCT value of at various biopolymer concentration based hybrid films has been obtained from electrochemical impedance spectroscopy analysis and possible mechanism for formation of complexes during electrochemical polymerization on conducting substrates has been investigated. Biosensors developed based on these hybrid biopolymers have very high sensitivity.

  • PDF

NanoBio-Technology for Practical Implementation in Drug Discovery

  • 민달희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.83-83
    • /
    • 2013
  • To date, various nanobiotechnologicalapproaches for biosensors and drug development have been explosively studied. Despite of successful demonstrations, the new technologies hardly enjoyed routine applications in practical nanobiomedicine. Here, researchers trained at the interface of basic sciences and engineering are expected to play critical roles. In this tutorial, I will introduce recent studies which harness graphene derivatives for developing bioanalytical platforms to quantitatively analyze various enzyme activities and biomarkers. The systems rely on attractive interaction between graphene oxide and nucleic acids or phospholipids. Recently, one of the graphene-based bioassay system was applied to anti-viral drug screening and potent hit compounds were identified to treat hepatitis C. This study clearly shows that a new nanobio-technology can be routinely implemented in drug discovery, providing many advantages over conventional methods.

  • PDF

마이크로/나노 다공질 실리콘을 이용한 바이오센서 (Micro/Nano Porous Silicon-based Biosensors)

  • 박은진;진준형;송민정;홍석인;민남기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1643-1644
    • /
    • 2006
  • 본 논문에서는 마이크로/나노 다공질 실리콘 기판에 여러 형태의 전극을 형성하여 혈액 중의 요소, 콜레스테롤, AST, ALT 농도를 검출하는 바이오센서를 제각하고, 그 특성을 고찰하였다. 다공질 실리콘에 제작된 전극들은 모두 평면전극에 비해서 높은 감도증가를 나타내었는데, 이것은 다공질 실리콘 구조를 통한 유효전극면적의 증가에 기인하는 것으로 생각된다.

  • PDF

Characterization of Nanopores on Micropillars Pt Electrodes for Non-Enzymatic Electrochemical Sensor Applications

  • Park, Dae-Joon;Lee, Yi-Jae;Park, Jae-Yeong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권3호
    • /
    • pp.161-165
    • /
    • 2007
  • In this paper, mesoporous Pt on micro pillars Pt electrode is newly designed, fabricated, and characterized on silicon substrate for non-enzymatic electrochemical sensor micro-chip integrated with CMOS readout circuitry. The fabricated micro/nano Pt electrode has cylindrical hexangular arrayed nano Pt pores with a diameter of 3.2 nm which is formed on top of the micro pillars Pt electrode with approximately $6{\mu}m$ in diameter, $6{\mu}m$ in space, and $50{\mu}m$ in height. The measured current responses of the fabricated plane Pt, mesoporous Pt, and mesoporous Pt on the micro pillar Pt electrodes are approximately $9.9nA/mm^2,\;6.72{\mu}A/mm^2,\;and\;7.67{\mu}A/mm^2$ in 10mM glucose solution with 0.1M phosphate buffered saline (PBS) solution, respectively. In addition, the measured current responses of the fabricated plane Pt, mesoporous Pt, and mesoporous Pt on the micro pillar Pt electrodes are approximately $0.15{\mu}A/mm^2,\;0.56{\mu}A/mm^2,\;and\;0.74{\mu}A/mm^2$ in 0.1mM ascorbic acid (AA) solution with 0.1M phosphate buffered saline (PBS) solution, respectively. This experimental results show that the proposed micro/nano Pt electrode is highly sensitive and promising for CMOS integrated non-enzymatic electrochemical sensor applications. Since the micro-pillar Pt electrode can also be utilized with a micro-fluidic mixer in the sensor chip, the sensor chip can be much smaller, cheaper, and easier to be fabricated.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

Interaction between RuO2 and Carbon Nanotubes - Photoemission and X-ray Absorption Study

  • Lee, Seung-Youb;Kim, Yoo-Seok;Jeon, Chel-Ho;Ihm, Kyu-Wook;Kang, Tai-Hee;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.567-567
    • /
    • 2012
  • Since the carbon nanotubes (CNTs) have extraordinary material properties, many researchers are trying to make a practical application in various fields [1]. In particular, the high surface area of CNTs was fascinated for nano-template on the catalytic system. $RuO_2$ coated CNTs are useful functional nano-composites in many applications, including super capacitors, fuel cells, biosensors, and field emitters. However, the research of interaction between CNTs and $RuO_2$ was not satisfied with various fields [2]. In this study, we will introduce the change of chemical and electrical state of $RuO_2$/CNTs at different temperatures by synchrotron radiation photoemission spectroscopy (SRPES). The t-MWCNTs used in this experiment were grown on the Ni/TiN/Si substrates by chemical vapor deposition. $RuO_2$ of 4-20 nm in thickness was deposited on the t-MWNTs by sputter. The SRPES measurements were carried out at the 4B1 beamline of the Pohang Accelerator Laboratory in Korea. The result of XPS measurement indicates that the deposited $RuO_2$ on the CNTs was reduced into pure Ru at above $300^{\circ}C$. And we confirmed that the effective work function of $RuO_2$/CNTs was decreased with increasing temperature.

  • PDF

자기조립 단분자막을 이용한 MOSFET형 단백질 센서의 제작 및 특성 (Fabrication and Characteristics of MOSFET Protein Sensor Using Nano SAMs)

  • 한승우;박근용;김민석;김홍석;배영석;최시영
    • 센서학회지
    • /
    • 제13권2호
    • /
    • pp.90-95
    • /
    • 2004
  • Protein and gene detection have been growing importance in medical diagnostics. Field effect transistor (FET) - type biosensors have many advantages such as miniaturization, standardization, and mass-production. In this work, we have fabricated metal-oxide-semiconductor (MOS) FET that operates as molecular recognitions based electronic sensor. Measurements were taken with the devices under phosphate buffered saline solution. The drain current ($I_{D}$) was decreased after forming self-assembled mono-layers (SAMs) used to capture the protein, which resulted from the negative charges of SAMs, and increased after forming protein by 11.5% at $V_{G}$ = 0 V due to the positive charges of protein.

Novel Fabrication of Designed Silica Structures Inspired by Silicatein-a

  • Park, Ji-Hun;Kwon, Sun-Bum;Lee, Hee-Seung;Choi, In-Sung S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.557-557
    • /
    • 2012
  • Silicatein-${\alpha}$, the enzyme extracted from silica spicules in glass sponges, has been studied extensively in the way of chemistry from 1999, in which the pioneering work by Morse, D. E. - the discovery of the enzymatic hydrolysis in Silicatein-${\alpha}$ - was published. Since its reaction conditions are physiologically favored, synthesis of various materials, such as gallium oxide, zirconium oxide, and silicon oxide, was achieved without any hazardous wastes. Although some groups synthesized oxide films and particles, they have not achieved yet controlled morphogenesis in the reaction conditions mentioned above. With the knowledge of catalytic triad involved in hydrolysis of silicone alkoxide and oligomerization of silicic acid, we designed the novel peptide amphiphiles to not only form self-assembled structure, but also display similar activities to silicatein-${\alpha}$. Designed templates were able to self-assemble into left-handed helices for the peptide amphiphiles with L-form amino acid, catalyzing polycondensation of silicic acids onto the surface of them. It led to the formation of silica helices with 30-50 nm diameters. These results were characterized by various techniques, including SEM, TEM, and STEM. Given the situation that nano-bio-technology, the bio-applicable technology in nanometer scale, has been attracting considerable attention; this result could be applied to the latest applications in biotechnology, such as biosensors, lab-on-a-chip, biocompatible nanodevices.

  • PDF

Fabrication and Characterization of an OTFT-Based Biosensor Using a Biotinylated F8T2 Polymer

  • Lim, Sang-Chul;Yang, Yong-Suk;Kim, Seong-Hyun;Kim, Zin-Sig;Youn, Doo-Hyeb;Zyung, Tae-Hyoung;Kwon, Ji-Young;Hwang, Do-Hoon;Kim, Do-Jin
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.647-652
    • /
    • 2009
  • Solution-processable organic semiconductors have been investigated not only for flexible and large-area electronics but also in the field of biotechnology. In this paper, we report the design and fabrication of biosensors based on completely organic thin-film transistors (OTFTs). The active material of the OTFTs is poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) polymer functionalized with biotin hydrazide. The relationship between the chemoresistive change and the binding of avidin-biotin moieties in the polymer is observed in the output and on/off characteristics of the OTFTs. The exposure of the OTFTs to avidin causes a lowering of ID at $V_D$ = -40 V and $V_G$ = -40 V of nearly five orders of magnitude.

산화아연 압전 나노전력발전소자 기반 에너지 하베스팅

  • 김상우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.49-49
    • /
    • 2010
  • Nanopiezotronics is an emerging area of nanotechnology with a variety of applications that include piezoelectric field-effect transistors and diodes, self-powered nanogenerators and biosystems, and wireless nano/biosensors. By exploiting coupled piezoelectric and semiconducting characteristics, it is possible for nanowires, nanobelts, or nanorods to generate rectifying current and potential under external mechanical energies such as body movement (handling, winding, pushing, and bending) and muscle stretching, vibrations (acoustic and ultrasonic waves), and hydraulic forces (body fluid and blood flow). Fully transparent, flexible (TF) nanogenerators that are operated by external mechanical forces will be presented. By controlling the density of the seed layer for ZnO nanorod growth, transparent ZnO nanorod arrays were grown on ITO/PES films, and a TF conductive electrode was stacked on the ZnO nanorods. The resulting integrated TF nanodevice (having transparency exceeding 70 %) generated a noticeable current when it was pushed by application of an external load. The output current density was clearly dependent on the force applied. Furthermore, the output current density depended strongly on the morphology and the work function of the top electrode. ZnO nanorod-based nanogenerators with a PdAu, ITO, CNT, and graphene top electrodes gave output current densities of approximately $1-10\;uA/cm^2$ at a load of 0.9 kgf. Our results suggest that our TF nanogenerators are suitable for self-powered TF device applications such as flexible self-powered touch sensors, wearable artificial skins, fully rollable display mobile devices, and battery supplements for wearable cellular phones.

  • PDF