• Title/Summary/Keyword: Nano-alloy

Search Result 439, Processing Time 0.024 seconds

Fabrication of Porous Nano Particles from Al-Cu Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법으로 제조된 Al-Cu 합금 나노분말을 이용한 다공성 나노 입자 제조)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.234-238
    • /
    • 2008
  • Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).

Wear Characteristics of Lubricant with Nano-diamond Particles on Al-6061 Aluminum Alloy (나노 다이아몬드 입자를 첨가한 엔진 오일의 알루미늄 6061 합금에 대한 마모 특성)

  • Hwang, Sung-Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.16-23
    • /
    • 2021
  • Pin-to-disc wear testing experiments were conducted to investigate the wear characteristics of commercial oil (5W-40) with nano-diamond particles. The upper specimen was a SUJ-2 high-carbon chromium steel ball with a diameter of 4 mm, and the lower specimen was made of the Al-6061 alloy. The applied load was 5 N, and the sliding speed was 0.25 m/s. The wear tests were conducted at a sliding distance of 500 m. The friction coefficients and wear rates of the Al-6061 specimens were tested using commercial oil with different nano-diamond concentrations ranging from 0 to 0.02 wt.%. The addition of nano-diamond particles to commercial oil reduced both the wear rate and coefficient of friction of the Al-6061 alloy. The use of nano-diamond particles as a solid additive in oil lubricants was found to improve the tribological behavior of the Al-6061 alloy. For the Al-6061 alloy, the optimal concentration was found to be 0.005 wt.% in view of the friction coefficient and wear rate. Further investigation is needed to determine the optimal concentration of nano-diamond particles for various loadings, sliding speeds, oil temperatures, and sliding distances.

Study on Hardness and Corrosion Resistance of Magnesium by Anodizing and Sealing Treatment With Nano-diamond Powder (양극산화와 나노 다이아몬드 분말 봉공처리에 의한 마그네슘의 경도와 부식에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.260-265
    • /
    • 2014
  • In this study, in order to increase surface ability of hardness and corrosion of magnesium alloy, anodizing and sealing with nano-diamond powder was conducted. A porous oxide layer on the magnesium alloy was successfully made at $85^{\circ}C$ through anodizing. It was found to be significantly more difficult to make a porous oxide layer in the magnesium alloy compared to an aluminum alloy. The oxide layer made below $73^{\circ}C$ by anodizing had no porous layer. The electrolyte used in this study is DOW 17 solution. The surface morphology of the magnesium oxide layer was investigated by a scanning electron microscope. The pores made by anodizing were sealed by water and aqueous nano-diamond powder respectively. The hardness and corrosion resistance of the magnesium alloy was increased by the anodizing and sealing treatment with nano-diamond powder.

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

Electrodeposited Ni-W-Si3N4 alloy composite coatings: Evaluation of Scratch test

  • Gyawali, Gobinda;Joshi, Bhupendra;Tripathi, Khagendra;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.178-179
    • /
    • 2014
  • In this study, $Ni-W-Si_3N_4$ alloy composite coatings were prepared by pulse electrodeposition method using nickel sulfate bath with different contents of tungsten source, $Na_2WO_4.2H_2O$, and dispersed $Si_3N_4$ nano particles. The structure and microstructure ofcoatings was separately analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results indicated that nano $Si_3N_4$ and W content in alloy had remarkable effect on microstructure, microhardness and scratch resistant properties. Tungsten content in Ni-W and $Ni-W-Si_3N_4$ alloy ranged from 7 to 14 at.%. Scratch test results suggest that as compared to Ni-W only, $Ni-W-Si_3N_4$ prepared from Ni/W molar ratio of 1:1.5 dispersed with 20 g/L $Si_3N_4$ has shown the best result among different samples.

  • PDF

A First Principles Study on Nano-scale Pt Alloy Structures for Fuel Cell Catalysts (제일원리전산을 이용한 연료전지용 나노 스케일 백금 합금촉매에 대한 열역학적 구조 분석)

  • Noh, Seung-Hyo;Han, Byung-Chan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.217-221
    • /
    • 2012
  • Over the last decade, performances of low temperature fuel cells are substantially improved by developing highly active Pt-M alloy catalysts. The electrochemical stability of those catalysts, however, still does not meet the commercial grade for fuel cells to be long-term power sources of electrical vehicles. To unveil a major mechanism causing such weak durability, we extensively utilize ab-initio computations on nano-scale Pt-Co alloy catalysts and analyze thermodynamically the most stable structure as a function of compositional variation. Our results indicate that there is a certain feature governing the particle distribution of a specific alloy element on the nano-scale catalysts, which aggravates the electrochemical degradation.

  • PDF

Aluminizing of Incoroy 909 Alloy by Pack Cementation Method (팩 세멘테이션법에 의한 Incoloy 909 합금의 알루미나이징)

  • Ahn, Jin-Sung;Kwon, Soon-Woo;Yoon, Jae-Hong;Park, Bong-Gyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.173-178
    • /
    • 2006
  • Incoloy alloy 909 is an Fe-Ni-Co based superalloy that is attractive for gas turbine engine applications. The absence of chromium, however, makes the alloy more susceptible to oxidation in high temperature. To improve the oxidation resistance aluminizing was performed by high activity low temperature pack cementation process. Aluminizing condition was examined with different times and temperatures. Optimum aluminizing conditions were at the temperature of $552^{\circ}C$ for 20 hrs. In the optimized condition, the thickness of the aluminized layer was about $20{\mu}m$. Also, the aluminized layer made the alloy to increase the resistance to the corrosion.

THE EFFECT OF OVER AND UNDERLAYER ON THE MAGNETORESISTANCE IN Co-Ag NANO-GRANULAR ALLOY FILMS

  • Kim, Yong-Hyuk;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.451-455
    • /
    • 1995
  • The composition and thickness dependence and the ferromagnetic under- and overlayer effect on the magnetoresistance ratio and saturation field of the Co-Ag nano-granular films were investigated. The maximum magnetoresistance (23% at R.T.) in the as-deposited state was obtained in the $3000{\AA}$ $Co_{30} Ag_{70}$ bare alloy film. As the thickness of the alloy films decreased below $500{\AA}$, the MR ratio decreased because of the resistivity increase and the non-uniform film formation. We showed that the ferromagnetic over- and underlayer could reduce the saturation field of the nano-granular films via exchange coupling effect. The magnetoresistance and the saturation field of the $100{\AA}$ alloy film were 3.65 % and 2.85 kOe respectively and those of the under- and overlayered alloy films with $200{\AA}$ Fe were 3.3 % and 1.23 kOe respectively.

  • PDF