• Title/Summary/Keyword: Nano-Plasma

Search Result 636, Processing Time 0.025 seconds

New Evaluation of Initial Growth Mechanisms of Hydroxyapatite on Self-assembled Collagen Nanofibrils by Using ToF-SIMS and AFM Techniques

  • Park, Young-Jae;Choi, Gyu-Jin;Lee, Tae-Geol;Lee, Won-Jong;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.397-397
    • /
    • 2010
  • Bone is considered as hierarchically organized biocomposites of organic (collagen) and inorganic (hydroxyapatite) materials. The precise structural dependence between hydroxyapatite (HAp, $Ca_{10}(PO_4)_6(OH)_2)$ crystals and collagen fibril is critical to unique characteristics of bone. To meet those conditions and obtain optimal properties, it is essential to understand and control the initial growth mechanisms of hydroxyapatite at the molecular level, such as other nano-structured materials. In this study, collagen fibrils were prepared by adsorbing native type I collagen molecules onto hydrophobic surface. Hydrophobicity was introduced on the Si wafer surface by using PECVD (plasma enhanced chemical vapor deposition) method and cyclohexane as a precursor. Biomimetic nucleation and growth of HAp on the self-assembled collagen nanofibrils were occurred through incubation of the sample in SBF (simulated body fluid). Chemical and morphological evolution of HAp nanocrystals was investigated by surface-sensitive analytical techniques such as ToF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) and AFM (Atomic Force Microscopy) in the early growth stages (< 24 hrs). The very initial stages (< 12 hrs) of mineralization could be clearly demonstrated by ToF-SIMS chemical mapping of surface. In addition to ToF-SIMS and AFM measurement, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis were conducted to characterize the HAp layer in the late stages. This study is of great importance in the growth of real bone-like materials with a structure analogous to that of natural bones and the development of biomimetic nanomaterials.

  • PDF

Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles

  • Kurtinaitiene, Marija;Mazeika, Kestutis;Ramanavicius, Simonas;Pakstas, Vidas;Jagminas, Arunas
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • Superparamagnetic iron oxide nanoparticles (Nps), composed of magnetite, $Fe_3O_4$, or maghemite, ${\gamma}-Fe_2O_3$, core and biocompatible polymer shell, such as dextran or chitozan, have recently found wide applications in magnetic resonance imaging, contrast enhancement and hyperthermia therapy. For different diagnostic and therapeutic applications, current attempt is focusing on the synthesis and biomedical applications of various ferrite Nps, such as $CoFe_2O_4$ and $MnFe_2O_4$, differing from iron oxide Nps in charge, surface chemistry and magnetic properties. This study is focused on the synthesis of manganese ferrite, $MnFe_2O_4$, Nps by most commonly used chemical way pursuing better control of their size, purity and magnetic properties. Co-precipitation syntheses were performed using aqueous alkaline solutions of Mn(II) and Fe(III) salts and NaOH within a wide pH range using various hydrothermal treatment regimes. Different additives, such as citric acid, cysteine, glicine, polyetylene glycol, triethanolamine, chitosan, etc., were tested on purpose to obtain good yield of pure phase and monodispersed Nps with average size of ${\leq}20nm$. Transmission electron microscopy (TEM), X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), $M\ddot{o}ssbauer$ spectroscopy down to cryogenic temperatures, magnetic measurements and inductively coupled plasma mass spectrometry were employed in this study.

Dielectric Characteristics due to the nano-pores of SiOCH Thin Flm (기공형성에 의한 SiOCH 박막의 유전 특성)

  • Kim, Jong-Wook;Park, In-Chul;Kim, Hong-Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.19-23
    • /
    • 2009
  • We have studied dielectric characteristics of low-k interlayer dielectric materials was fabricated by plasma enhanced chemical vapor deposition (PECVD). BTMSM precursor was introduced with the flow rates from 24 sccm to 32 sccm by 2 sccm step in the constant flow rate of 60 sccm $O_2$. Then, SiOCH thin film deposited at room temperature was annealed at temperature of $400^{\circ}C$ and $500^{\circ}C$ for 30 minutes in vacuum. The vibrational groups of SiOCH thin films were analyzed by FT/IR absorption lines, and the dielectric constant of the low-k SiOCH thin films were obtained by measuring C-V characteristic curves. With the result that FTIR analysis, as BTMSM flow rate increase, relative carbon content of SiOCH thin film increased from 29.5% to 32.2%, and increased by 32.8% in 26 sccm specimen after $500^{\circ}C$ annealing. Dielectric constant was lowest by 2.32 in 26 sccm specimen, and decreased more by 2.05 after $500^{\circ}C$ annealing. Also, leakage current is lowest by $8.7{\times}10^{-9}A/cm^2$ in this specimen. In the result, shift phenomenon of chemical bond appeared in SiOCH thin film that BTMSM flow rate is deposited by 26 sccms, and relative carbon content was highest in this specimen and dielectric constant also was lowest value

  • PDF

Platinum-Catalyzed and Ion-Selective Polystyrene Fibrous Membrane by Electrospinning and In-Situ Metallization Techniques

  • Hong, Seung-Hee;Lee, Sun-Ae;Nam, Jae-Do;Lee, Young-Kwan;Kim, Tae-Sung;Won, Sung-Ho
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.204-211
    • /
    • 2008
  • A platinum-catalyzed polyelectrolyte porous membrane was prepared by solid-state compression of electrospun polystyrene (PS) fibers and in-situ metallization of counter-balanced ionic metal sources on the polymer surface. Using this ion-exchange metal-polymer composite system, fiber entangled pores were formed in the interstitial space of the fibers, which were surrounded by sulfonic acid sites ($SO_3^-$) to give a cation-selective polyelectrolyte porous bed with an ion exchange capacity ($I_{EC}$) of 3.0 meq/g and an ionic conductivity of 0.09 S/cm. The Pt loading was estimated to be 16.32 wt% from the $SO_3^-$ ions on the surface of the sulfonated PS fibers, which interact with the cationic platinum complex, $Pt(NH_3)_4^{2+}$, at a ratio of 3:1 based on steric hindrance and the arrangement of interacting ions. This is in good agreement with the Pt loading of 15.82 wt% measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The Pt-loaded sulfonated PS media showed an ionic conductivity of 0.32 S/cm. The in-situ metallized platinum provided a nano-sized and strongly-bound catalyst in robust porous media, which highlights its potential use in various electrochemical and catalytic systems.

A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature (HFCVD 증착 온도 변화에 따른 단결정 다이아몬드 표면 형상 및 성장률 변화)

  • Gwon, J.U.;Kim, M.S.;Jang, T.H.;Bae, M.K.;Kim, S.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.239-244
    • /
    • 2021
  • Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.

Germanium-based pinning dopants for MgB2 bulk superconductors

  • Chung, K.C.;Ranot, M.;Shinde, K.P.;Oh, Y.S.;Kang, S.H.;Jang, S.H.;Hwang, D.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.36-39
    • /
    • 2019
  • Effects of the spherically shaped Ge and the rod-like carbon-coated Ge on the superconducting properties of $MgB_2$ were investigated. Pure Ge and carbon-coated Ge nano-powders were synthesized under the different amount of $CH_4$ (0 to 5 kPa) by using DC thermal plasma method. When the $CH_4$ was added ~100 nm sized Ge with a spherical shape changed to rod-like morphology with a diameter of ~30-70 nm and a length of ~400-500 nm. Also it was confirmed that thin carbon layers of a few nanometers were formed along the rod length and the agglomerated carbons were found on the edges of rods. Pure spherical Ge and Ge/C rods were mixed and milled with Mg & B precursor to form the doped $MgB_2$ bulk samples by the solid-state reaction method. Almost no change of $T_c$ was noticed for the pure Ge-added $MgB_2$, whereas $T_c$ was found to decrease with the Ge/C-added $MgB_2$ samples. It was found that the pure spherical Ge showed to have a negative effect on the flux pinning of $MgB_2$. However, Ge/C rods can enhance the flux pinning property of $J_c$ due to the coated carbon on Ge rods.

Association of serum ferritin level and depression with respect to the body mass index in Korean male adults

  • Lee, Hea Shoon;Park, Eunmi
    • Nutrition Research and Practice
    • /
    • v.13 no.3
    • /
    • pp.263-267
    • /
    • 2019
  • BACKGROUD/OBJECTIVES: Obesity is globally a major public health issue. Evidence suggests that elevated ferritin levels are associated with obesity, dyslipidemia, insulin resistance, and metabolic syndrome. This study was undertaken to examine the relationship between the serum ferritin level and depression in Korean male adults with respect to classification of the prevailing obesity. SUBJECTS/METHODS: This was a case-control study; subjects were classified into obese group (${\geq}25.0kg/m^2$, 28 subjects) and normal group ($18.5-22.9kg/m^2$, 27 subjects). A survey was conducted to assess the depression levels as per the guidelines suggested by the Center program for Epidemiological Studies-Depression (CES-D). Blood was collected from each group for assessing biomarkers, and isolated plasma was evaluated for fasting glucose, insulin, quantitative insulin sensitivity check index, and ferritin levels. Data were analyzed, and groups were compared with respect to Body Mass Index (BMI), depression scale and biomarkers. RESULTS: The average depression score of the obesity group was 16.86, which was higher than the normal group (12.56). Subjects scoring more than 16 points comprised 53.6% of the population in the obese group, which was more than double that in the normal group, as assessed by the CES-D program. Furthermore, the serum ferritin level of the obesity group was 207.12 ng/mL, which was higher than that of the normal group (132.66 ng/mL). Lastly, the BMI appeared to be significantly correlated with both depression (r = 0.320, P = 0.017) and elevated ferritin levels (r = 0.352, P = 0.008). CONCLUSION: This study provides evidence of existing correlation between ferritin and depression with obesity.

Influence of Fluorine Doping on Hardness and Compressive Stress of the Diamond-Like Carbon Thin Film

  • Sayed Mohammad Adel Aghili;Raheleh Memarzadeh;Reza Bazargan Lari;Akbar Eshaghi
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.124-129
    • /
    • 2023
  • This study assessed the influences of fluorine introduced into DLC films on the structural and mechanical properties of the sample. In addition, the effects of the fluorine incorporation on the compressive stress in DLC films were investigated. For this purpose, fluorinated diamond-like carbon (F-DLC) films were deposited on cobalt-chromium-molybdenum substrates using radio-frequency plasma-enhanced chemical vapor. The coatings were examined by Raman scattering (RS), Attenuated total reflectance Fourier transform infrared spectroscopic analysis (ATR-FTIR), and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by the Stony equation. The ATR-FTIR analysis revealed that F was present in the amorphous matrix mainly as C-F and C-F2 groups. Based on Raman spectroscopy results, it was determined that F made the DLC films more graphitic. Additionally, it was shown that adding F into the DLC coating resulted in weaker mechanical properties and the F-DLC coating exhibited lower stress than DLC films. These effects were attributed to the replacement of strong C = C by feebler C-F bonds in the F-DLC films. F-doping decreased the hardness of the DLC from 11.5 to 8.8 GPa. In addition, with F addition, the compressive stress of the DLC sample decreased from 1 to 0.7 GPa.

Measurements of the Temperature Coefficient of Resistance of CVD-Grown Graphene Coated with PEI (PEI가 코팅된 CVD 그래핀의 저항 온도 계수 측정)

  • Soomook Lim;Ji Won Suk
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.342-348
    • /
    • 2023
  • There has been increasing demand for real-time monitoring of body and ambient temperatures using wearable devices. Graphene-based thermistors have been developed for high-performance flexible temperature sensors. In this study, the temperature coefficient of resistance (TCR) of monolayer graphene was controlled by coating polyethylenimine (PEI) on graphene surfaces to enhance its temperature-sensing performances. Monolayer graphene grown by chemical vapor deposition (CVD) was wet-transferred onto a target substrate. To facilitate the interfacial doping by PEI, the hydrophobic graphene surface was altered to be hydrophilic by oxygen plasma treatments while minimizing defect generation. The effect of PEI doping on graphene was confirmed using a back-gated field-effect transistor (FET). The CVD-grown monolayer graphene coated with PEI exhibited an improved TCR of -0.49(±0.03) %/K in a temperature range of 30~50℃.

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.