• Title/Summary/Keyword: Nano-Composites-Materials

Search Result 392, Processing Time 0.02 seconds

Raman Spectroscopy Analysis of Graphene Films Grown on Ni (111) and (100) Surface (니켈 (111)과 (100) 결정면에서 성장한 그래핀에 대한 라만 스펙트럼 분석)

  • Jung, Daesung;Jeon, Cheolho;Song, Wooseok;An, Ki-Seok;Park, Chong-Yun
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2016
  • A graphene film, two-dimensional carbon sheet, is a promising material for future electronic devices and so on. In graphene applications, the effect of substrate on the atomic/electronic structures of graphene is significant, so we studied an interaction between graphene film and substrate. To study the effect, we investigated the graphene films grown on Ni substrate with two crystal face of (111) and (100) by Raman spectroscopy, comparing with graphene films transferred on $SiO_2/Si$ substrate. In our study, the doping effect caused by charge transfer from Ni or $SiO_2/Si$ substrate to graphene was not observed. The bonding force between graphene and Ni substrate is stronger than that between graphene and $SiO_2/Si$. The graphene films grown on Ni substrate showed compressive strain and the growth of graphene films is incommensurate with Ni (100) lattice. The position of 2D band of graphene synthesized on Ni (111) and (100) substrate was different, and this result will be studied in the near future.

An Experimental Study for Electro-active Polymer Electrode and Actuator (전기활성 고분자 전극 및 구동기에 관한 실험적 연구)

  • Lee, Jun-Man;Ryu, Sang-Ryeoul;Lee, Dong-Joo;Lin, Zheng-Jie
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.289-294
    • /
    • 2013
  • A thinner is used to improve the multi-walled carbon nano-tube (CNT) and carbon black (CB) dispersion in a polymer matrix and to make a soft electrode. The electrical and mechanical properties of the soft electrodes are investigated as functions of CNT, CB and thinner content. The optimal mixing condition for the electrode is thinner 80, CNT 3.5, CB 18 (phr) on the basis of matrix (KE-12). The specific resistance of that is 73 (${\Omega}{\cdot}cm$), and tensile strength, tensile modulus, and elongation of that is 0.45 MPa, 0.21 MPa, and 184%, respectively. Also, a simple structure of the actuator with an optimized electrode and elastomer is fabricated and its characteristic is evaluated. At the operating voltage 25 kV, the displacement of an elastomer KE-12 is 2.24 mm, and that of an elastomer KE-12 with thinner 50 (phr) is 4.05 mm. It shows a higher displacement compared to that of 3M 4910 which has similar modulus. The actuator made with elastomer and electrode of the same material (KE-12) may have advantages for fatigue life and application.