• 제목/요약/키워드: Nano-Composites-Materials

검색결과 392건 처리시간 0.026초

PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구 (Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites)

  • 김성룡;임승원;김대훈;이상협;박종만
    • 접착 및 계면
    • /
    • 제9권3호
    • /
    • pp.7-13
    • /
    • 2008
  • 열전도도가 유사한 입자형 필러인 silicon carbide (SiC)와 섬유형 필러인 carbon fiber (CF)를 polyetheretherketone (PEEK) 고분자에 첨가하여 복합재료의 열확산도에 미치는 영향을 연구하였다. 전자현미경을 통해 얻은 단면사진으로부터 SiC와 CF가 PEEK 매트릭스 안에 균일하게 분산되어 있고 필러들이 부분적으로 서로 네트워크를 형성한 것을 관찰하였다. 레이저 섬광법을 이용하여 상온에서 $200^{\circ}C$까지 PEEK/SiC와 PEEK/CF 복합재료의 열확산도를 측정하였으며, 열확산도는 온도가 상승함에 따라 PEEK-필러와 필러-필러 계면에서의 포논산란 증가에 의하여 감소하였다. 필러함량이 증가함에 따라 복합재료의 열확산도가 증가하였으며, 2상계에 대하여 유도된 Maxwell 및 Nielson 예측식을 실험값과 비교함으로써 매트릭스 내의 필러 분포, 방향성, 종횡비 및 필러간의 상호작용 등을 유추할 수 있었다. Nielson 예측식은 PEEK/SiC 복합재료에 대하여 열전도도를 잘 예측하였다. 입자형 필러인 SiC에 비하여 섬유형 필러인 탄소섬유가 동일한 함량에서 열확산에 기여하는 필러 네트워크를 효과적으로 형성하여 높은 열확산도를 가지는 것으로 추정된다.

  • PDF

친환경 타이어 충진제 적용을 위한 SiO2-ZnO 복합체 합성 및 특성평가 (Synthesis and Characterization of SiO2-ZnO Composites for Eco-Green Tire filler)

  • 전순정;송시내;강신재;김희택
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.357-363
    • /
    • 2015
  • 타이어 라벨링제 도입으로 인한 친환경 타이어 개발의 요구로 타이어산업에서 사용되고 있는 기존 산화아연의 문제점 개선을 위하여 나노산화아연과 나노기공 실리카와의 복합체 합성에 대한 연구를 진행하였다. 본 연구에서는 타이어의 트레드(tread) 부분에 적용될 기존의 고무 보강재인 카본블랙을 대체하기 위한 실리카와 나노산화아연의 복합체를 합성하기 위하여, 일정량의 나노기공 실리카를 함유하고 재질 상으로는 나노기공 실리카와 산화아연을 물리적 결합을 통하여 hysteresis 손상을 줄이면서 트레드의 탄성을 증대시키기 위해 내마모성능의 향상을 목표로 실험을 진행하였다. 이를 위하여 복합체와 고무 조성물과의 컴파운딩 시 낮은 활성도와 분산안정성 저하의 문제점 개선하고자 숙성시간(Aging time)과 몰 비 그리고 반응물의 반응 순서에 따라 미치는 영향에 대해 조사하였다. 0.03몰 비의 산화아연과 숙성기간 10일의 조건의 실리카에서 가장 작은 평균입도(약 50.5 nm)와 안정적인 분산성을 보였고, 약 $649m^2/g$의 높은 비표면적을 나타내었다.

상압소결법으로 제조한 Cu 입자 분산 Al2O3 나노복합재료의 미세조직 및 특성 (Microstructure and Properties of Cu Dispersed Al2O3 Nanocomposites Prepared by Pressureless Sintering)

  • 이경환;오승탁
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.280-284
    • /
    • 2009
  • The pressureless sintering behavior of $Al_2O_3$/Cu powder mixtures, prepared from $Al_2O_3$/CuO and $Al_2O_3$/Cu-nitrate, has been investigated. Microstructural observation revealed that $Al_2O_3$ powders with nano-sized Cu particles could be synthesized by hydrogen reduction method. The specimens, pressureless-sintered at $1400^{\circ}C$ for 4 min using infrared heating furnace with the heating rate of $200^{\circ}C$/min, showed the relative density of above 90%. Maximum hardness of 16.1 GPa was obtained in $Al_2O_3$/MgO/Cu nanocomposites. The nanocomposites exhibited the enhanced fracture toughness of 4.3-5.7 $MPa{\cdot}m^{1/2}$, compared with monolithic $Al_2O_3$. The mechanical properties were discussed in terms of microstructural characteristics.

Synchrotron X-ray Reflectivity Studies on Nanoporous Low Dielectric Constant Organosilicate Thin Films

  • Oh, Weon-Tae;Park, Yeong-Do;Hwang, Yong-Taek;Ree, Moon-Hor
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2481-2485
    • /
    • 2007
  • Spatially resolved, quantitative, non-destructive analysis using synchrotron x-ray reflectivity (XR) with subnano-scale resolution was successfully performed on the nanoporous organosilicate thin films for low dielectric applications. The structural information of porous thin films, which were prepared with polymethylsilsesquioxane and thermally labile 4-armed, star-shaped poly(ε-caprolactone) (PCL) composites, were characterized in terms of the laterally averaged electron density profile along with a film thickness as well as a total thickness. The thermal process used in this work caused to efficiently undergo sacrificial thermal degradation, generating closed nanopores in the film. The resultant nanoporous films became homogeneous, well-defined structure with a thin skin layer and low surface roughness. The average electron density of the calcined film reduced with increase of the initial porogen loading, and finally leaded to corresponding porosity ranged from 0 to 22.8% over the porogen loading range of 0-30 wt%. In addition to XR analysis, the surface and the inner structures of films are investigated and discussed with atomic force and scanning electron microscopy images.

자동차 그로멧의 유한요소해석 및 노화시험에 대한 연구 (A Study on Finite Element Analysis and Aging Test for Automotive Grommet)

  • 이성범;염상훈;한창용;우창수
    • Elastomers and Composites
    • /
    • 제47권3호
    • /
    • pp.201-209
    • /
    • 2012
  • 그로멧은 자동차의 고무부품들 중의 하나로 에틸렌 프로필렌 고무로 구성되어 있으며, 고무의 비선형 초탄성 성질은 고무제품의 거동을 예측하는데 중요하다. 본 논문에서는, 일축인장시험과 이축인장시험을 통하여 안정된 응력-변형률 관계를 구하고 그로멧에 대한 유한요소해석을 수행하였고, 수명예측을 위한 노화시험을 소개하였다.

Multiphase Simulation of Rubber and Air in the Cavity of Mold

  • Woo, Jeong Woo;Yang, Kyung Mi;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.263-268
    • /
    • 2016
  • In the polymer shaping process that uses molds, the quality of the molded products is determined not only by the flow of the (molten) polymer but also by the air venting in the cavity. Inadequate air venting in the cavity can cause defects in the product, such as voids, short shot, or black streaks. As it is critical to consider the location and size of the vents for proper venting of the air in the cavity, a method that predicts the flow of air and material is required. The venting of air by the flow of rubber inside the cavity was simulated by using a multi-phase computational fluid dynamics method. Through computer simulation, the interface of rubber and air over time was predicted. Then, the velocity and pressure distribution of the venting air were observed. Our research proposes a fundamental method for analyzing the multi-phase flow of polymer materials and air inside the cavity of a mold.

홍조류섬유보강 폴리프로필렌 바이오복합재료의 제조 및 특성 분석 (Manufacturing and Characterization of Red algae fiber/Polypropylene Biocomposites)

  • 이민우;서영범;한성옥
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2008년도 춘계학술대회
    • /
    • pp.178-182
    • /
    • 2008
  • The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose, furthermore, it has higher thermal decomposition temperature than that of the microcrystalline cellulose(MCC). Polypropylene biocomposites reinforced with BRAF have been fabricated with various BRAF contents by compression molding method and their mechanical and thermomechanical properties have been studied. The mechanical strength as tensile, impact and flexural modulus of BRAF/PP biocomposites were gradually improved with increasing the BRAF content, and thermal property which against the thermal expansion was markdly improved, especially. These results are compared with chopped non-woody fibers as Henequen or Kenaf, BRAF was more effective for fabrication of biocomposites reinforced small-sized fibers. The red algae fiber reinforced biocomposites has the applicability such as electronics, biodegradable products and small-structure composites.

  • PDF

Effect of Blade Materials on Wear Behaviors of Styrene-Butadiene Rubber and Butadiene Rubber

  • Lee, Gi-Bbeum;Shin, Beomsu;Han, Eunjung;Kang, Dawon;An, Dae Joon;Nah, Changwoon
    • Elastomers and Composites
    • /
    • 제56권3호
    • /
    • pp.172-178
    • /
    • 2021
  • The wear behavior of styrene-butadiene rubber (SBR) and butadiene rubber (BR) was investigated using a blade-type abrader with a steel blade (SB), Ti-coated tungsten carbide blade (TiB), or zirconia blade (ZB). The wear rate of SBR against SB and TiB decreased with increasing number of revolutions because of the blunting of the blades during wear. However, the wear rate of SBR against ZB remained nearly constant with little blade blunting. Generally, the wear rate of BR was largely unaffected by the blade material used for abrasion. The wear rate and frictional coefficient of SBR were found to be higher than those of BR at similar levels of frictional energy input. A power-law relationship was found between the wear rate and frictional energy input during abrasion. A well-known Schallamach pattern was observed for SBR, while a much finer pattern was observed for BR. The blade material affects the wear rate of the rubbers because the macromolecular free radicals and blade tend to undergo mechano-chemical reactions. The inorganic ZB was found to be the most inert for such a mechanism.

Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories

  • Mousavi, S. Behnam;Amir, Saeed;Jafari, Akbar;Arshid, Ehsan
    • Advances in nano research
    • /
    • 제10권3호
    • /
    • pp.235-251
    • /
    • 2021
  • In the current study, the free vibrational behavior of a Porous Micro (PM) beam which is integrated with Functionally Graded Piezoelectric (FGP) layers with initial curvature is considered based on the two trigonometric shear deformation theories namely SSDBT and Tan-SDBT. The structure's mechanical properties are varied through its thicknesses following the given functions. The curved microbeam is exposed to electro-mechanical preload and also is rested on a Pasternak type of elastic foundation. Hamilton's principle is used to extract the motion equations and the MCST is used to capture the size effect. Navier's solution method is selected as an analytical method to solve the motion equations for a simply supported ends case and by validating the results for a simpler state with previously published works, effects of different important parameters on the behavior of the structure are considered. It is found that although increasing the porosity reduces the natural frequency, but enhancing the volume fraction of CNTs increasing it. Also, by increasing the central angle of the curved beam the vibrations of the structure increases. Designing and manufacturing more efficient smart structures such as sensors and actuators are of the aims of this study.

Gamma and neutron shielding properties of B4C particle reinforced Inconel 718 composites

  • Gokmen, Ugur
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1049-1061
    • /
    • 2022
  • Neutron and gamma-ray shielding properties of Inconel 718 reinforced B4C (0-25 wt%) were investigated using PSD software. Mean free path (MFP), linear and mass attenuation coefficients (LAC,MAC), tenth-value and half-value layers (TVL,HVL), effective atomic number (Zeff), exposure buildup factors (EBF), and fast neutron removal cross-sections (FNRC) values were calculated for 0.015-15 MeV. It was found that MAC and LAC increased with the decrease in the content of B4C compound by weight in Inconel 718. The EBFs were computed using G-P fitting method for 0.015-15 MeV up to the penetration depth of 40 mfp. HVL, TVL, and FNRC values were found to range between 0.018 cm and 3.6 cm, between 2.46 cm and 12.087 cm, and between 0.159 cm-1 and 0.194 cm-1, respectively. While Inconel 718 provides the maximum photon shielding property since it offered the highest values of MAC and Zeff and the lowest value of HVL, Inconel 718 with B4C(25 wt%) was observed to provide the best shielding material for neutron since it offered the highest FNRC value. The study is original in terms of several aspects; moreover, the results of the study may be used in nuclear technology, as well as other technologies including nano and space technologies.