• Title/Summary/Keyword: Nano-Composites-Materials

Search Result 393, Processing Time 0.026 seconds

Effect of Textile Pattern on Mechanical and Impregnation Properties of Glass Fiber/Thermoplastic Composite (유리 섬유/열가소성 복합 재료의 기계적 및 함침 특성에 대한 직물 패턴의 영향)

  • Kim, Neul-Sae-Rom;Lee, Eun-Soo;Jang, Yeong-Jin;Kwon, Dong-Jun;Yang, Seong Baek;Yeom, Jung-Hyun
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.317-322
    • /
    • 2018
  • In various industry, the composite is tried to be applied to products and thermoplastic based composite is in the spotlight because this composite can be recycled. The use of continuous fiber thermoplastic (CFT) method increased gradually than long fiber thermoplastic (LFT). In this study, tensile, flexural, and impact test of different array types of glass fiber (GF)/thermoplastic composites were performed to compare with GF array. Impregnation property between GF mat and thermoplastic was determined using computed tomography (CT). At CFT method, thermoplastic film is not wet into GF roving and many voids are appeared into composite. This phenomenon affects to decrease mechanical properties. Plain pattern GF mat was the best mechanical and impregnation properties that distance between two roving was set closely to $100{\mu}m$.

Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating (나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상)

  • Seo, Seong-Wook;Ha, Min-Seok;Kwon, Oh-Yang;Cho, Heung-Soap
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • The electrical conductivity of carbon-fiber reinforced plastics (CFRP's) has been improved by indium-tin oxide (ITO) nano-particle coating on carbon fibers for the purpose of lightning strike protection of composite fuselage skins. ITO nano-particles were coated on the surface of carbon fibers by spraying the colloidal suspension with 10~40% ITO content. The electrical conductivity of the CFRP has been increased more than three times after ITO coating, comparable to or higher than that of B-787 composite fuselage skins with metal wire-meshes on the outer surface, without sacrificing the tensile property due to the existence of nano-particles at fiber-matrix interface. The damage area by the simulated lightning strike was also verified for different materials and conditions by using ultrasonic C-scan image. As the electrical conductivity of 40% nano-ITO coated sample surpass that of the B-787 sample, the damage area by lightning strike also appeared comparable to that of the materials currently employed for composite fuselage construction.

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.

A Study on the Fabrication and Mechanical Properties Evaluation of Natural Fiber Composites added Eco-friendly Materials (친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.213-219
    • /
    • 2020
  • Recently, global facing environmental issues have been raised caused by plastic waste. Hence, increasing the demand for interest in environmentally friendly materials. In this row, research on engineering composite materials also replacing the synthetic reinforcement by introducing natural fibers. However, focus on the strength and interfacial adhesion between matrix and reinforcement is very essential in natural fiber composite, which is insufficient in the literature. There are number of approaches for improving the mechanical strength of the composites, one of the common methods is to reinforce additive nanoparticles. The present investigation, bio-additives were synthesized utilizing bio-waste, cheap, bio-degradable sea-weed powder that could replace expensive nanomaterials and reinforced into the CFRP composite through Hand lay-up followed by a vacuum process. Mechanical properties were evaluated and analyzed through microanalysis. The results concluded that synthesized additives are effective for improving mechanical properties such as tensile, flexural, impact, and shear strength. Overall, the results confirmed that the fabricated composites have potential applications in the field of engineering applications.

Mechanical Properties of Carbon Nanotube/Cu Nanocomposites Produced by Powder Equal Channel Angular Pressing (분말 ECAP 공정으로 제조된 탄소나노튜브/Cu 나노복합재료의 기계적 성질)

  • Yoon, Seung-Chae;Jeong, Young-Gi;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.360-365
    • /
    • 2006
  • Carbon nanotubes (CNTs) have been the subject of intensive studies for applications in the fields of nano technologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their exceptionally small diameters (${\appros}\;several\;nm$) as well as their high Young's modulus (${\appros}1\;TPa$), tensile strength (${\appros}\;200\;GPa$) and high elongation (10-30%) in addition to a high chemical stability, CNTs are attractive reinforcement materials for light weight and high strength metal matrix composites. Although extensive researches have been performed on the electrical, mechanical and functional properties of CNTs, there are not many successful results on the mechanical properties of CNT dispersed nanocomposites. In this paper, we applied equal channel angular pressing for consolidation of CNT/Cu powder mixtures. We also investigated the hardness and microstructures of CNT/Cu nanocomposites used experimental for metal matrix composites.

Thermal Degradation Analyses of Epoxy-Silica Nano Composites (에폭시-실리카 나노 복합소재의 열화 특성 및 거동 분석)

  • Jang, Seo-Hyun;Han, Yusu;Hwang, Do Soon;Jung, Joo Won;Kim, Yeong K.
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.268-274
    • /
    • 2020
  • This paper analyzed the degradation behaviors of silica nano epoxy composite based on the isoconversional method. The size of the silica nano particle was about 12 nm and the particles were mixed by three different weight ratios to make the degradation test samples. The thermogravimetric analyses were performed under six different temperature increase rates to measure the weight changes. Four different methods, Friedman, Flynn-Wall-Ozawa, Kissinger and DAEM (Distributed Activation Energy Method), were employed to calculate the activation energies depending on the conversion ratios, and their calculation results were compared. The results represented that the activation energy was increased when the silica nano particles were mixed up to 10%, indicating the definite contribution of the particles to the degradation behavior enhancements. However, the enhancement was not proportional to the particle mixture ratio by demonstrating the similar activation energies between 10% and 18% samples. The calculation results by the different methods were also compared and discussed.

Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications

  • Jang, Kihun;Lee, Sung-Won;Yu, Seongil;Salunkhe, Rahul R.;Chung, Ildoo;Choi, Sungmin;Ahn, Heejoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2974-2978
    • /
    • 2014
  • $Mn_3O_4$/multi-walled carbon nanotube (MWCNT) composites are prepared by chemically synthesizing $Mn_3O_4$ nanoparticles on a MWCNT film at room temperature. Structural and morphological characterization has been carried out using X-ray diffraction (XRD) and scanning and transmission electron microscopies (SEM and TEM). These reveal that polycrystalline $Mn_3O_4$ nanoparticles, with sizes of about 10-20 nm, aggregate to form larger nanoparticles (50-200 nm), and the $Mn_3O_4$ nanoparticles are attached inhomogeneously on MWCNTs. The electrochemical behavior of the composites is analyzed by cyclic voltammetry experiment. The $Mn_3O_4$/MWCNT composite exhibits a specific capacitance of $257Fg^{-1}$ at a scan rate of $5mVs^{-1}$, which is about 3.5 times higher than that of the pure $Mn_3O_4$. Cycle-life tests show that the specific capacitance of the $Mn_3O_4$/MWCNT composite is stable up to 1000 cycles with about 85% capacitance retention, which is better than the pure $Mn_3O_4$ electrode. The improved supercapacitive performance of the $Mn_3O_4$/MWCNT composite electrode can be attributed to the synergistic effects of the $Mn_3O_4$ nanoparticles and the MWCNTs, which arises not only from the combination of pseudocapacitance from $Mn_3O_4$ nanoparticles and electric double layer capacitance from the MWCNTs but also from the increased surface area, pore volume and conducting property of the MWCNT network.

Facile Preparation of Ag2S-CNT Nanocomposites with Enhanced Photo-catalytic Activity

  • Meng, Ze-Da;Sarkar, Sourav;Zhu, Lei;Ullah, Kefayat;Ye, Shu;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Here we report improved photo-catalytic effect of $Ag_2S$ under visible light using carbon nano-tubes (CNT) modified with $Ag_2S$ nanoparticles. The optical properties, structural properties and compositional analysis, as well as the photo-electrochemical properties of the prepared composites were investigated. It was found that the photocurrent density, and the photo-catalytic effect, was increased by modification of CNT in this way. Compared with the separate effects of $Ag_2S$ and CNT nanoparticles, the photocatalytic effect of CNT-modified-with-$Ag_2S$ composites, increased significantly due to a synergistic effect between the CNT and the $Ag_2S$ nanoparticles.

A Study on Fire Resistance of Abaca/Vinyl-ester Composites (마닐라 삼/비닐에스터 복합재료의 내화성 연구)

  • Lee, Dong-Woo;Park, Byung-Jin;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Eco-convivial composites with improved properties are essential to present polymer scenario and can be made easily by replacing partially/completely renewable materials either matrix or reinforcement along with few % of additives. In these investigations, Abaca fabric have been used as reinforcement for manufacturing of Vinyl ester composites through VARTM technique and study the effect of alkali surface treatment of abaca fabric and flame retardant additives i.e., ammonium polyphosphate (APP) with halloysite nano-clay (HNT) on mechanical and flame retardant properties. The results concluded that, surface treatment deceased the hydrophilic nature of fabric and enhanced the interfacial bonding with hydrophobic matrix and eventually increased mechanical properties slightly of developed composites. Similarly, the flame retardancy of the composites improved significantly and increases the burning time by varying the wt% of filler concentration.

Investigation of the Effect of Seaweed Nanofibers in Jute Fiber-reinforced Composites as an Additive (해초 나노섬유가 황마섬유 강화 복합재료의 기계적 물성에 미치는 영향)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.398-403
    • /
    • 2018
  • Recently, environmental pollution caused by plastic waste, ecosystem disturbance of micro-plastics and human body accumulation are becoming big problems. In order to replace the traditional plastic, eco-friendly resin and natural fiber-based composite materials have been developed, but they have a disadvantage that their mechanical properties are significantly lower than those of synthetic fiber-based composites. In this study, eco - friendly nanofiber was extracted from seaweed and used as an additive in order to improve the mechanical properties of jute fiber-reinforced composites. Through the hand lay-up process, the composites were fabricated, and it was confirmed that the nanofiber was effective in improving the mechanical properties of natural fiber composites through tensile, bending and drop weight impact tests.