• Title/Summary/Keyword: Nano-Applied Products

Search Result 65, Processing Time 0.028 seconds

Public and Experts Perception Analysis about Negative Effects in Nanotechnology Based on Conjoint Analysis (컨조인트 분석을 이용한 나노기술의 부정적 영향에 대한 일반인과 전문가의 인식분석)

  • Bae, Seoung Hun;Shin, Kwang Min;Yoon, Jin Seon;Kang, Sang Kyu;Kim, Jun Hyun;Sung, Gi Wan;Lee, Ki-Kwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.49-55
    • /
    • 2015
  • Nanotechnology has been growing constantly and it is becoming the leading technology in scientific research and development. Although nanotechnology has important applications in broad variety of fields without boundary of any particular industrial area, the study of nanotechnology related to its commercialization has been conducted in a few ways. To put that figure in context, this study investigates public and expert perceptions about negative potentials of nanotechnology. Through a series of surveys with public (N = 541) and experts (N = 62), we analyzed about public willingness to pay for nano-applied products. Survey results showed that public and experts preferred nano-applied products in the order of electronics, cosmetics, and food and medicine. Experts express high payment intention to electronics rather than public intention. In addition, the survey results showed the purchasing intention of both public and expert group was affected by the attributes of nano-applied products in the order of risk fatality, risk chance, certification, and labeling. But experts put more importance in risk fatality than risk chance comparing to public. Through the case analysis of the effects of labeling and certification, we revealed either labeling or certification can induce both public and experts to buy the nano-applied products with high risk chance and low risk fatality. However, for the nano-applied product with high risk fatality and low risk chance, both labeling and certification are simultaneously required to make customers have positive purchasing intention. The result of this study could be utilized for the nanotechnology-based company to get the consumer behavior information about nano-based product and to establish their marketing strategy.

The Control of Anti-slip Characteristics of Packaging Paper Using Nano-colloidal Silica (나노 콜로이달 실리카를 이용한 포장용지의 미끄럼특성 제어)

  • Lee, Won-No;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.33-40
    • /
    • 2005
  • In this study, a nano-colloidal silica sol was applied to control the anti-slip property by spraying on kraft paper. Two kinds of nano-colloidal silica sol which have cationic and anionic charge were applied in kraft paper, and the friction and physical strength properties of kraft paper were investigated. The application of colloidal silica sol on wet web in wet-end process by spraying method was tried to improve the friction property and to avoid the general problems of machine contaminations caused by the scattering of sprayed silica particles in dryer part. The physical properties of sheet were also improved by the application of wet web spraying method, and the optimum conditions of wet web spraying operation were closely related with the conditions of pH and electrical charge of wet web and silica sol.

Evaluation of sustainability of mobile phone case and improvement of electromagnetic shielding by nano particles (휴대폰 케이스의 지속가능성 평가 및 나노 입자를 사용한 전자기파 흡수성능 개선)

  • Kang Y.C.;Jung W.K.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.477-480
    • /
    • 2005
  • In this paper, the concept of sustainability was applied to mechanical design and manufacturing of mobile-phone case. A new evaluation method to find products' good and weak point for sustainability was developed. Two mobile phones were evaluated using the evaluation tool. As a result, electro-magnetic (EM) wave was considered as a harmful factor of the products, and improved front panel was made using nano particles that absorb EM waves. The EM shielding tests revealed that silver nano powders absorbed EM while MWCNT had no effect.

  • PDF

Formation of electric circuit for printed circuit board using metal nano particles (금속 나노 입자를 이용한 인쇄 회로 기판의 회로 형성)

  • Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.545-545
    • /
    • 2007
  • Recently, innovative process has been investigated in order to replace the conventional high-cost micro patterning processes on the electronic products. To produce desirable profit margins from this low cost products, printed circuit board(PCB), will require dramatic changes in the current manufacturing philosophies and processes. Innovative process using metal nano particles replaces the current industry standard of subtractive etched of copper as a highly efficient way to produce robust circuitry on low cost substrates. An advantage of using metal nano particles process in patterned conductive line manufacturing is that the process is additive. Material is only deposited in desired locations, thereby reducing the amount of chemical and material waste. Simply, it just draws on the substrate as glass epoxy or polyimide with metal nano particles. Particles, when their size becomes nano-meter scale, show some specific characteristics such as enhanced reactivity of surface atoms, decrease in melting point, high electric conductivity compared with the bulk. Melting temperature of metal gets low, the metal nano particles could be formated onto polymer substrates and sintered under $300^{\circ}C$, which would be applied in PCB. It can be getting the metal line of excellent electric conductivity.

  • PDF

Introduction to the Technology, Applications, Products, Markets, R&D, and Perspectives of Nanofoods in the Food Industry

  • Kim, Dong-Myong;Lee, Gee-Dong
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.348-357
    • /
    • 2006
  • Nano is a unit that designates a billionth; accordingly nanotechnology could be described as the study and applications of the unique characteristics and phenomena of nanometer size materials. Applications of nanotechnology fall into two categories (one is top-down and the other is bottom-up). Currently, most products are the results of the top-down approach. Nanofoods have distinct functional characteristics stemming from the size, mass, chemical combinations, electrolytic features, magnetic properties of food sources at the nano level and which can be applied for safe absorption and delivery into the body. The greatest advantage of nanofood is that it permits the efficient use of small quantities of nutritional elements by increasing digestive absorption ability and by delivering natural elements without any change in their original characteristics. On the other hand, there are still unsolved problems, such as questions about safety and introduction of harmful material. The demand for new commercial food products is increasing, and commercial food producers are gradually combining nanotechnology and traditional food preparation methods. Nanofoods will improve our eating habits remarkably in the future. Tomorrow we will design nanofoods by shaping molecules and atoms. It will have a big impact on the food and food-processing industries. The future belongs to new products and new processes with the goals of customizing and personalizing consumer products. Nanotechnology is expected to be applied to not only foods themselves, but also to food packaging, production, safety, processing and storage. Also, it is believed that nanotechnology will be applied tracking finished products back to production facilities and even to specific processing equipment in those facilities. The aim of this study is the introduction of technology, applications, products, markets, R&D, and perspectives of nanofoods in the food industry.

Fabrication of Metallic Nano-filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.237-240
    • /
    • 2005
  • The demand of micro electrical mechanical system (MEMS) bio/chemical sensor is rapidly increasing. To prevent the contamination of sensing area, a filtration system is required in on-chip total analyzing MEMS bio/chemical sensor. A nano-filter was mainly applied in some application detecting submicron feature size bio/chemical products such as bacteria, fungi and so on. We suggested a simple nano-filter fabrication process based on replication process. The mother pattern was fabricated by holographic lithography and reactive ion etching process, and the replication process was carried out using polymer mold and UV-imprinting process. Finally the nano-filter is obtained after removing the replicated part of metal deposited replica. In this study, as a practical example of the suggested process, a nano-dot array was replicated to fabricate nano-filter fur bacteria sensor application.

  • PDF

Development of Stretch Sensors to Measure Thigh Motor Capacity (허벅지 운동능력 측정을 위한 스트레치 센서 개발)

  • Jang, Jinchul;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.5
    • /
    • pp.99-113
    • /
    • 2021
  • This study aimed to produce sensors for measuring thigh motor skills. A textile stretch sensor was manufactured using a CNT(Carbon Nano Tube) 0.1 wt% water SWCNT(Single-Walled Carbon Nano Tube) solution, and different designs were applied to increase the sensitivity of the sensor, and different GF(Gauge Factor) values were compared using UTM devices. The same design was applied to fabrics and weaves to observe changes in performance according to fibrous tissue, and the suitability of sensors was determined based on tensile strength, elongation, and the elongation recovery rate. Sensitivity was found to vary depending upon the design. Thus the manufactured sensor was attached to a pair of fitness pants as a prototype, divided into lunge position and squat position testing, and the stretch sensor was used to measure thigh movements. It was shown that stretch sensors used to measure thigh motor skills should have light and flexible features and that elongation recovery rates and tensile strength should be considered together. The manufactured stretch sensor may be applicable to various sports fields that use lower limb muscles, wearable healthcare products, and medical products for measuring athletic ability.

Synthesis of Nano-Clay and The Application for Nanocomposite (나노클레이의 합성 및 나노복합재로의 응용)

  • Jeong Soon-Yong;Jeong Eon-Il
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.122-130
    • /
    • 2005
  • Layered silicate was synthesized at hydrothermal condition from silica adding to various materials. Nano-clay was synthesized by intercaltion of various amine compounds into synthetic layered silicate. The products were analysed by XRD, SEM, and FT-IR in order to examine the condition of synthesis and intercalation. From the results, it was confirmed that kaolinite was synthesized from precipitated silica and gibbsite at $220^{\circ}C$ during 10 days, and hetorite was synthesized from silica sol at $100^{\circ}C$ during 48 h. Na-Magadiite was synthesized from silica gel at $150^{\circ}C$ during 72 h, and Na-kenyaite was synthesized from silica gel at $160^{\circ}C$ during 84 h. Nano-clay was prepared using synthetic layered silicate intercalated with various amine compounds. Kenyaite was easily intercalated by various organic compounds, and has the highest basal-spacing value among other layered silicates. Basal-spacing was changed according to the length of alkyl chain of amine comopounds. Polymer can be easily intercalated by dispersion with large space of interlayer. Finally, epoxy/nano-clay nanocomposite can be easily prepared.

Manufacturing and Antibacterial Characteristics of Functional Non-woven Fabrics Including Nano-silver Particles (은 나노 입자를 함유한 기능성 부직포의 제조와 항균특성)

  • Ro, Duck-Kil;Hong, Young-Ki;Park, Eun-Hee
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.18-25
    • /
    • 2008
  • The functional non-woven fabrics have been applied in various industry fields, such as clothing, hygiene, environment, medical and so forth. The functional non-woven fabrics were manufactured by meltblown and finishing processes. These functional non-woven fabrics were based on 5wt% masterbatch using 2,000ppm nano-silver resin composite. Silver is one of the most universal antimicrobial substances. Nano-technology enables us to expand the surface area of silver particles markedly. Silver nano particles were successfully produced less than 50nm in size. The functional non-woven fabrics including nano-silver particles showed excellent antibacterial activities against Staphylococcus aureus (ATCC 6538) and Klebsieila pneumoniae (ATCC 4352). From the results, functional non-woven fabrics including silver nano particels probably will be available as a good and safe antibiotic alternative, such as mask medium filter, water purifier filter, hygiene wet tissues, marine products pad and so forth.

Functional Properties of Milk Protein in Fermented Milk Products (발효유제품의 유단백질 기능성 연구 동향)

  • Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.29-32
    • /
    • 2007
  • An understanding functional properties and molecular interactions of milk proteins was critical to improve qualities of fermented dairy products including yogurts and cheeses. Extensive rearrangements of casein particles were important factors to enhance whey separation in yogurt gel network. The use of high hydrostatic pressure treated whey protein as an ingredient of low fat processed cheese food resulted in the production of low fat processed cheese food with acceptable firmness and enhanced meltabilities. Milk protein-based nano particles produced by self-association of proteins could be better nutrient delivery vehicle than micro particle since particle size reduction in nano particles could lead to increased residence time and surface area available in GI tract.

  • PDF