• Title/Summary/Keyword: Nano-$TiO_2$

Search Result 563, Processing Time 0.036 seconds

Electrophoretic Display by using Microcup Sheet and Charged Particles

  • Park, Lee-Soon;Park, Jin-Woo;Choi, Hae-Yun;Han, Yoon-Soo;Kwon, Young-Hwan;Choi, Hyung-Suk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.966-970
    • /
    • 2004
  • Electrophoretic display has recently stimulated tremendous interest due to potential commercialization in the filed of information displays including e-books, e-newspapers, and other low-power portable displays. A new transparent soft mold press (TSMP) process developed in this study was found to give a good electrophoretic display panel with prepatterned micropools for the filling of charged particle slurry. It was also found that charged $TiO_2$ particles with 74.09 mV of zeta potential and 3.11 ${\times}$ $10^{-5}$ $cm^2$/Vs of mobility were successfully prepared.

  • PDF

Properties of the Dye Sensitized Solar Cell with Localized Surface Plasmon Resonance Inducing Au Nano Thin Films

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.417-421
    • /
    • 2016
  • We improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC) by preparing a working electrode (WE) with localized surface plasmon resonance (LSPR) by inducing Au thin films with thickness of 0.0 to 5.0 nm, deposited via sputtering. Field emission scanning electron microscopy and atomic force microscopy were used to characterize the microstructure of the blocking layer (BL) of the Au thin films. Micro-Raman measurement was employed to confirm the LSPR effect, and a solar simulator and potentiostat were used to evaluate the photovoltaic properties, including the impedance and the I-V of the DSSC of the Au thin films. The results of the microstructural analysis confirmed that nano-sized Au agglomerates were present at certain thicknesses. The photovoltaic results show that the ECE reached a value of 5.34% with a 1-nm thick-Au thin film compared to the value of 5.15 % without the Au thin film. This improvement was a result of the increase in the LSPR of the $TiO_2$ layer that resulted from the Au thin film coating. Our results imply that the ECE of a DSSC may be improved by coating with a proper thickness of Au thin film on the BL.

Theoretical Analysis and Modeling for PCB Embedded Tunable Filter with Inductive Coupling (유도결합구조 가변형 대역통과필터의 이론적 분석 및 모델링)

  • Lee, Tae-C.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1929_1930
    • /
    • 2009
  • Fully embedded tunable bandpass filter (BPF) with inductive coupling circuits is newly designed and demonstrated for UHF TV tuner ranged from 500MHz to 900MHz receivers. Conventional RF tuning circuit with an electromagnetic coupled tunable filter has several problems such as large size, high volume, and high cost, since the electromagnetic coupled filter is comprised of several passive components and air core inductors to be assembled and controlled manually. To address these obstacles, compact tunable filter with inductive coupling circuit was embedded into low cost organic package substrate. The embedded filter was optimally designed to have high performance by using high Q spiral stacked inductors, high dielectric $BaTiO_3$ composite MIM capacitors, varactor diodes. It exhibited low insertion loss of approximately -2dB, high return loss of below -10dB, and large tuning range of 56.3%. It has an extremely compact size of $3.4{\times}4.4{\times}0.5mm^3$.

  • PDF

Preparation of Nano-sized Titanium Oxide Powder Using Natural Polymer Matrix (천연고분자 매트릭스를 사용한 산화티탄 나노입자의 합성)

  • Kim, Soo-Jong;Han, Cheong-Hwa;Shim, Jae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.489-494
    • /
    • 2013
  • Nano-sized titanium oxide powders were synthesized by a polymer matrix technique using pulp and Titanium tetraisopropoxide (TTIP) as starting materials. The synthesized powders were characterized by XRD and FE-SEM. The particle size of the powders was controlled by preparation conditions, such as heat treatment temperature and time. After investigating various drying and heat treatment conditions, 50-100 nm sized homogeneous titanium oxide particles were obtained by treating at $600^{\circ}C$ for 1 h. The crystallization and rapid growth of particles was accelerated by increasing heat treatment temperature and time. Anatase phase generated below $600^{\circ}C$ transformed to the rutile phase with increasing heat treatment temperature. Moreover, above $800^{\circ}C$, heat treatment time had a very large influence on particle growth, and changing the heating condition also had a large influence on crystal growth.

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

Surface Treatments of Titanium Biomaterials by Anodization (양극산화법에 의한 생체적합형 티타늄 표면 개질)

  • Mun, Kyu-Shik;Kim, Jae-Yeon;Kim, Dong-Hyun;Cheon, Se-Jun;Kim, Hyo-Eun;Lee, Myoung-Hoon;Choi, Won-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.306-306
    • /
    • 2007
  • The surface was transformed to porous titanium oxide by the anodization of pure titanium. Titanium was anodized in non-aqueous and aqueous electrolytes at different potentials between 5 V and 150 V. Various electrolytes were compose of ethylene glycerol, $H_2SO_4,\;NH_4F\;and\;H_2O$. We obtained titania nanotube arrays on the micro pore of titanium. Micro pores and nano tubes were obtained by anodization at high potentials and low potentials, respectively. Morphologies of nanotubes and micro pore were characterized by FE-SEM. The unique surface structure is very attractive to electrical and medical applications such as gas sensor, biosensor, dental implant and stent.

  • PDF

Synthesis of Superionic Conductive Li1+x+yAlxSiyTi2-xP3-yO12 Solid Electrolytes

  • Hyeonwoo Jeong;Dan Na;Jiyeon Baek;Sanggil Kim;Suresh Mamidi;Cheul-Ro Lee;Hyung-Kee Seo;Inseok Seo
    • Nanomaterials
    • /
    • v.12 no.7
    • /
    • pp.1158-1168
    • /
    • 2022
  • Commercial lithium-ion batteries using liquid electrolytes are still a safety hazard due to their poor chemical stability and other severe problems, such as electrolyte leakage and low thermal stability. To mitigate these critical issues, solid electrolytes are introduced. However, solid electrolytes have low ionic conductivity and inferior power density. This study reports the optimization of the synthesis of sodium superionic conductor-type Li1.5Al0.3Si0.2Ti1.7P2.8O12 (LASTP) solid electrolyte. The as-prepared powder was calcined at 650 ℃, 700 ℃, 750 ℃, and 800 ℃ to optimize the synthesis conditions and yield high-quality LASTP powders. Later, LASTP was sintered at 950 ℃, 1000 ℃, 1050 ℃, and 1100 ℃ to study the dependence of the relative density and ionic conductivity on the sintering temperature. Morphological changes were analyzed using field-emission scanning electron microscopy (FE-SEM), and structural changes were characterized using X-ray diffraction (XRD). Further, the ionic conductivity was measured using electrochemical impedance spectroscopy (EIS). Sintering at 1050 ℃ resulted in a high relative density and the highest ionic conductivity (9.455 × 10-4 S cm-1). These findings corroborate with the activation energies that are calculated using the Arrhenius plot. Therefore, the as-synthesized superionic LASTP solid electrolytes can be used to design high-performance and safe all-solid-state batteries.

Color Adjustment Study by Micro-Pattern Embedding in Optical Multilayer Thin Film (다층광학필름에서 마이크로패턴 삽입을 통한 색 조정 연구)

  • Kim, Min;Woo, Ju Yeon;Yoon, Junho;Hwangbo, Chang Kwon;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.409-417
    • /
    • 2016
  • It is well known that Morpho butterflies show distinctive, brilliant and iridescent colors and have micro-nano scale structures, instead of dyes and pigments, on their wings. This structural coloration is regarded as a novel technique to express color with a long lifetime, ease and precise tenability. Here, we studied optical multilayer thin films with thickness of several tens of nm ($TiO_2$ and $SiO_2$) and lens-shape micro-patterns. Fabrication and characterization of the multilayer stacking structure and the micro-pattern structure were performed and the films were analyzed via several optical measuring techniques. Finally, we discussed how the micro-pattern structure could enhance independence with color changes according to the viewing angle.

Support Effect of Arc Plasma Deposited Pt Nanoparticles/TiO2 Substrate on Catalytic Activity of CO Oxidation

  • Qadir, Kamran;Kim, Sang Hoon;Kim, Sun Mi;Ha, Heonphil;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.261-261
    • /
    • 2013
  • The smart design of nanocatalysts can improve the catalytic activity of transition metals on reducible oxide supports, such as titania, via strong metal-support interactions. In this work, we investigatedtwo-dimensional Pt nanoparticle/titania catalytic systems under the CO oxidation reaction. Arc plasma deposition (APD) and metal impregnation techniques were employed to achieve Pt nanoparticle deposition on titania supports, which were prepared by multitarget sputtering and sol-gel techniques. APD Pt nanoparticles with an average size of 2.7 nm were deposited on sputtered and sol-gel-prepared titania films to assess the role of the titania support on the catalytic activity of Pt under CO oxidation. In order to study the nature of the dispersed metallic phase and its effect on the activity of the catalytic CO oxidation reaction, Pt nanoparticles were deposited in varying surface coverages on sputtered titania films using arc plasma deposition. Our results show an enhanced activity of Pt nanoparticles when the nanoparticle/titania interfaces are exposed. APD Pt shows superior catalytic activity under CO oxidation, as compared to impregnated Pt nanoparticles, due to the catalytically active nature of the mild surface oxidation and the active Pt metal, suggesting that APD can be used for large-scale synthesis of active metal nanocatalysts.

  • PDF

Comparion of stability in titanium implants with different surface topographies in dogs

  • Kim, Nam-Sook;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.47-55
    • /
    • 2009
  • STATEMENT OF PROBLEM. A few of studies which compared and continuously measured the stability of various surface treated implants in the same individual had been performed. PURPOSE. We aim to find the clinical significance of surface treatments by observing the differences in the stabilization stages of implant stability. MATERIAL AND METHODS. Eight different surface topographies of dental implants were especially designed for the present study. Machined surface implants were used as a control group. 4 nano-treated surface implants(20 nm $TiO_2$ coating surface, heat-treated 80 nm $TiO_2$ coating surface, CaP coating surface, heat treated CaP coating surface) and 3 micro-treated surface implants [resorbable blast media(RBM) surface, sandblast and acid-etched(SAE) surface, anodized RBM surface] were used as experiment groups. All 24 implants were placed in 3 adult dogs. $Periotest^{(R)}$ & ISQ values measured for 8 weeks and all animals were sacrificed at 8 weeks after surgery. Then the histological analyses were done. RESULTS. In PTV, all implants were stabilized except 1 failed implants. In ISQ values, The lowest stability was observed at different times for each individual. The ISQ values were showed increased tendency after 5 weeks in every groups. After 4 to 5 weeks, the values were stabilized. There was no statistical correlation between the ISQ values and PTV. In the histological findings, the bone formation was observed to be adequate in general and no differences among the 8 surface treated implants. CONCLUSIONS. In this study, the difference in the stability of the implants was determined not by the differences in the surface treatment but by the individual specificity.