• Title/Summary/Keyword: Nano zero-valent iron

Search Result 16, Processing Time 0.027 seconds

Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon (영가철이 고정된 입상활성탄 제조를 위한 최적 합성조건 도출)

  • Hwang, Yuhoon;Mines, Paul D.;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.521-527
    • /
    • 2016
  • Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing Fe/GAC composite were suggested. Both total iron content and $Fe_0$ content can be significantly affected by preparation processes, therefore, it was important to avoid oxidation during preparation to achieve higher reduction capacity. Synthesis conditions such as reduction time and existence of intermediate drying step were investigated to improve $Fe_0$ content of Fe/GAC composites. The optimal condition was two hours of $NaBH_4$ reduction without intermediate drying process. The prepared Fe/GAC composite showed synergistic effect of the adsorption capability of the GAC and the degradation capability of the nZVI, which make this composite a very effective material for environmental remediation.

Formation of surface mediated iron colloids during U(VI) and nZVI interaction

  • Shin, Youngho;Bae, Sungjun;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.167-177
    • /
    • 2013
  • We investigated that removal of aqueous U(VI) by nano-sized Zero Valent Iron (nZVI) and Fe(II) bearing minerals (controls) in this study. Iron particles showed different U(VI) removal efficiencies (Mackinawite: 99%, green rust: 95%, nZVI: 91%, magnetite: 87%, pyrite: 59%) due to their different PZC (Point of Zero Charge) values and surface areas. In addition, noticeable amount of surface Fe(II) (181 ${\mu}M$) was released from nZVI suspension in 6 h and it increased to 384 ${\mu}M$ in the presence of U(VI) due to ion-exchange of U(VI) with Fe(II) on nZVI surface. Analysis of Laser-Induced Breakdown Detection (LIBD) showed that breakdown probabilities in both filtrates by 20 and 200 nm sizes was almost 24% in nZVI suspension with U(VI), while 1% of the probabilities were observed in nZVI suspension without U(VI). It indicated that Fe(II) colloids in the range under 20 nm were generated during the interaction of U(VI) and nZVI. Our results suggest that Fe(II) colloids generated via ion-exchange process should be carefully concerned during long-term remediation site contaminated by U(VI) because U could be transported to remote area through the adsorption on Fe(II) colloids.

Application of ZVI/TiO2 towards Clean-up of the Contaminated Soil with Polychlorinated Biphenyls (ZVI/TIO2를 이용한 폴리염화비페닐로 오염된 토양 정화)

  • Jae Wook Park;Yun Jin Jo;Dong-Keun Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.118-125
    • /
    • 2023
  • Once a site is contaminated with polychlorinated biphenyls (PCBs), serious environmental and human health risks are inevitable. Therefore, innovative but economical in situ remediation technologies must be immediately applied to the contaminated site. Recently, nanoscale zero-valent iron (nano-ZVI) particles have successfully been applied for the dechlorination of various chlorinated organic compounds like TCE, PCE and DDT, and they are considered to be environmentally safe due to the high abundance of iron in the earth's crust. Nano-ZVIs are much more reactive than granular ones, but tend to agglomerate due to their high surface energy and magnetic properties. In order to prevent them from being agglomerated toward larger particles, TiO2 was used as a support to immobilize the nano-ZVI particles as much as possible. 10wt% ZVI/TiO2 was prepared by adding NaBH4 slowly into an FeSO4/TiO2 aqueous slurry. In spite of their non-uniformity in size, the nano-ZVI particles were quite successfully dispersed onto the exterior surface of a non-porous TiO2 powder. The ZVI/TiO2 was then employed to degrade Aroclor 1242, a kind of PCBs standard, in spiked soil, and its reactivity towards the degradation of Aroclor 1242 was investigated. The fabricated ZVI/TiO2 degraded Aroclor 1242 in soil quite effectively, but the creation of remaining dechlorinated compounds, possibly high molecular weight hydrocarbons, in the soil was unavoidable.

Treatment Characteristics of Trichloroethylene(TCE) by Oxidation and Reduction with Nanoscale Zero-valent Iron (나노영가철의 산화·환원에 의한 트리클로로에틸렌 처리특성)

  • Park, Young-Bae;Jung, Yong-Jun;Choi, Jeong-Hak;Moon, Boung-Hyun
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.903-910
    • /
    • 2014
  • This study examined the treatment characteristics of hard-to-degrade pollutants such as TCE which are found in organic solvent and cleaning wastewater by nZVI that have excellent oxidation and reduction characteristics. In addition, this study tried to find out the degradation characteristics of TCE by Fenton-like process, in which $H_2O_2$ is dosed additionally. In this study, different ratios of nZVI and $H_2O_2$, such as 1.0 mM : 0.5 mM, 1.0 mM : 1.0 mM, and 1.0 mM : 2.0 mM were used. When 1.0 mM of nZVI was dosed with 1.0 mM of $H_2O_2$, the removal efficiency of TOC was the highest and the first order rate constant was also the highest. When 1mM of nZVI was dosed with 0.5 mM of $H_2O_2$, the first order rate constant and removal efficiency were the lowest. The size of first order rate constant and removal efficiency was in the order of nZVI 1.0 mM : $H_2O_2$ 1.0 mM > nZVI 1.0 mM : $H_2O_2$ 2.0 mM > nZVI 1.0 mM : $H_2O_2$ 0.5 mM > $H_2O_2$ 1.0 mM > nZVI 1.0 mM. It is estimated that when 1.0 mM of nZVI is dosed with 1.0 mM of $H_2O_2$, $Fe^{2+}$ ion generated by nZVI and $H_2O_2$ react in the stoichiometric molar ratio of 1:1, thus the first order rate constant and removal efficiency are the highest. And when 1.0 mM of nZVI is dosed with 2.0 mM of $H_2O_2$, excessive $H_2O_2$ work as a scavenger of OH radicals and excessive $H_2O_2$ reduce $Fe^{3+}$ into $Fe^{2+}$. As for the removal efficiency of TOC in TCE by simultaneous dose and sequential dose of nZVI and $H_2O_2$, sequential dose showed higher first order reaction rate and removal efficiency than simultaneous dose. It is estimated that when nZVI is dosed 30 minutes in advance, pre-treatment occurs and nanoscale $Fe^0$ is oxidized to $Fe^{2+}$ and TCE is pre-reduced and becomes easier to degrade. When $H_2O_2$ is dosed at this time, OH radicals are generated and degrade TCE actively.

Degradation of oxytetracycline by nano zero valent iron under UV-A irradiation: Chemical mechanism and kinetic

  • Hassanzadeh, Parisa;Ganjidoust, Hossein;Ayati, Bita
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.29-43
    • /
    • 2014
  • Pharmaceutical wastewater effluents are well known for their difficult elimination by traditional biotreatment methods and their important contribution to environmental pollution due to its fluctuating and recalcitrant nature. OTC is one of the nonbiodegradable antibiotics that makes antibiotic-resistant, so it can make be high risk for environment. NZVI can be a good choice for removal of OTC in aqueous solution. Response surface methodology (RSM) was used to optimize the amounts of NZVI and OTC to be used at pH 3 and under 200 W, UV-A irradiation. The responses were removal percent of absorption at 290 and 348 nm, TOC and COD of OTC. In the optimum condition, Linear model was performed 155 ppm of OTC were removed by 1000 ppm NZVI after 6.5 hours and the removal efficiency of absorption at 290 and 348 nm, TOC and COD were 87, 95, 85 and 89 percent, respectively. In the similar process, there is no organic compound after 14 hours. The parameters ORP, DO and pH were investigated for 6:30 hours to study the type of NZVI reaction in process. In the beginning of reaction, oxidation was the dominant reaction after 3 hours, photocatalytic reaction was remarkable. The mechanism of OTC degradation is proposed by HPLC/ESI-MS and four by products were found. Also the rate constants (first order kinetic chain reaction model) were 0.0099, 0.0021, 0.0010, 0.0049 and $0.0074min^{-1}$, respectively.