• Title/Summary/Keyword: Nano size

Search Result 2,178, Processing Time 0.025 seconds

A Study on the Size of Ultrafine Particles and Heavy Metal Concentrations in the Atmosphere (일반대기 중 극미세입자와 중금속 농도에 관한 연구)

  • Cho, Tea-Jin;Jeon, Hye-Li;Youn, Hyung-Sun;Lee, Mi-Young;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.480-495
    • /
    • 2010
  • This study evaluated the distribution of the concentrations of nano-particles and heavy metals (08-Pb, Cr, Zn, As, Fe, 09-Pb, Cr, Zn, Cu, Ni, Mn) in Seoul, Chungnam A and Gwangyang from August to December, in 2008 5 times each in the Seoul area, 5 times in and Chungnam A area and from August to November, in 2009 14 times in the Chungnam A area, 8 times in the Gwangyang area. The examined results showed high concentration level from $PM_1$ through $PM_{0.1}$ in all three areas. These results were obtained the concentration of particles by diameter and statistically significant in Stage5 (1.0-0.56 ${\mu}m$) from the result of conducting Kruskal-Wallis H test (p < 0.05). In the case of the heavy metal concentration included in 0.10-0.056 ${\mu}m$, 0.056 ${\mu}m$, the lead concentration of Chungnam Asan area was 6.49 ng/$m^3$ and 9.93 ng/$m^3$, which was higher than 3.05 ng/$m^3$ and 4.22 ng/$m^3$ of Seoul, respectively. The concentration of iron in Seoul was 9.28 ng/$m^3$ and 13.24 ng/$m^3$, that appeared higher than 2.38 ng/$m^3$ and 3.23 ng/$m^3$ of Chungnam A area, respectively. The concentration level was similar to other metals except lead and iron in Chungnam A area and Seoul. From the concentration of heavy metal included in 0.10-0.056 ${\mu}m$, 0.056 ${\mu}m$, the lead concentration of Chungnam A area was 0.31 ng/$m^3$ and 0.12 ng/$m^3$ while Gwangyang was 0.28 ng/$m^3$, 0.06 ng/$m^3$. Thus Chungnam A area showed higher lead concentration than Gwangyang. The manganese concentration of Chungnam A area was 0.12 ng/$m^3$ and 0.03 ng/$m^3$ while Gwangyang was 0.21 ng/$m^3$ and 0.08 ng/$m^3$. Therefore, the concentration of Gwangyang appeared higher than that of Chunnam A area. These two metals showed statistically significant in 0.056 ${\mu}m$ (p < 0.05, p < 0.01). Among the concentration of heavy metal in all regions, the result demonstrated that the order of higher concentration is arsenic > iron > zinc > chrome > lead > nickel > copper > manganese.

Characteristics of Transparent Conductive Tin Oxide Thin Films on PET Substrate Prepared by ECR-MOCVD (PET 기판상에 ECR 화학증착법에 의해 제조된 SnO2 투명도전막의 특성)

  • Kim, Yun Seok;Jeon, Bup Ju;Ju, Jeh Beck;Sohn, Tae Won;Lee, Joong Kee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.85-91
    • /
    • 2005
  • $SnO_2$ films were prepared at room temperature under a $(CH_3)_4Sn-H_2-O_2$ atmosphere in order to obtain transparent conductive polymer by using ECR-MOCVD (Electron Cyclotron resonance -Metal Organic Chemical Vapor Deposition) system. The electrical properties of the films were investigated as function of process parameters such as deposition time, microwave power, magnetic current power, magnet/showering/substrate distance and working pressure. An increase in microwave power and magnetic current power brought on $SnO_2$ film formation with low electric resistivity. On the other hand, the effects of process parameters described above on optical properties were insignificant in the range of our experimental scope. The transmittance and reflectance of the films prepared by the ECR-MOCVD exhibited their average values of 93-98% at wave length range of 380-780 nm and 0.1-0.5%, respectively. The grain size of the $SnO_2$ films that are also insensitive with the process parameters were in the range of 20-50 nm. On the basis of experimental data obtained in the present study, electrical resistivity of $7.5{\times}10^{-3}ohm{\cdot}cm$, transmittance of 93%, and reflectance of 0.2% can be taken as optimum values.

Growth of Metal Nano-Particles on Polarity Patterned Ferroelectrics by Photochemical Reaction (광화학적 반응을 이용한 편극 패턴된 강유전체 표면에 금속 나노입자의 증착에 관한 연구)

  • Park, Young-Sik;Kim, Jung-Hoon;Yang, Woo-Chul
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.300-306
    • /
    • 2011
  • We report the surface distribution of metal (Ag, Au) nanoparticles grown on polarity-patterned ferroelectric substrates by photochemical reaction. Single crystal periodically polarity-patterned $LiNbO_3$(PPLN) was used as a ferroelectric substrate. The nanoparticles were grown by ultra-violet (UV) light exposure of the PPLN in the aqueous solutions including metas. The surface distribution of the grown nanoparticles were measured by atomic force microscopy and identification of the orientation of the polarity of the ferroelectric surface was performed by piezoelectric force microscopy. The Ag- and Au-nanoparticles grown on +z polarity regions are larger and denser than that on -z polarity regions. In particlur, the largest and denser Ag-nanoparticles were grwon on the polarity boundary regions of the PPLN while Au-nanoparticles were not specifically grown on the boundary regions. Thus, we found that the size and position of metal nanoparticles grown on ferroelectric surfaces can be controlled by UV-exposure time and polarity pattern structures. Also, we discuss the difference of the surface distribution of the metal nano-particles depending on the polarity of the ferroelectric surfaces in terms of surface band structures, reduced work fucntion, and inhomogeneous electric field distribution.

Effect of Reaction Temperature on the Geometry of Carbon Coils Formed by SF6 Flow Incorporation in C2H2 and H2 Source Gases (SF6-C2H2-H2 기체에 의해 생성된 탄소 코일 기하구조의 반응온도 효과)

  • Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and SF6 as an additive gas under thermal chemical vapor deposition system. The geometries of as-grown carbon materials were investigated with increasing the reaction temperature as the increment of $25^{\circ}C$ from $650^{\circ}C$ up to $800^{\circ}C$. At $650^{\circ}C$, the embryos for carbon coils were formed. With increasing the reaction temperature to $700^{\circ}C$, the coil-type geometries were developed. Further increasing the reaction temperature to $775^{\circ}C$, the development of wave-like nano-sized coils, instead of nano-sized coils, and occasional appearance of micro-sized carbon coils could be observed. Fluorine in $SF_6$ additive may shrink the micro-sized coil diameter via the reduction of Ni catalyst size by fluorine's etching role. Finally, the preparation of the micro-sized carbon coils having the smaller coil diameters, compared with the previously reported ones, could be possible using $SF_6$ additive.

Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion with Pure and Mixed Solvents (순수용매와 혼합용매를 이용한 상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조)

  • Kim, Young Kyoung;Cho, Yu Song;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2015
  • This paper reports a fabrication of poly(L-lactic acid) (PLLA) scaffold membranes through phase separation process using pure and mixed solvents. Chloroform and 1,4-dioxane were used as pure solvents and mixed solvents were obtained by mixing the pure solvents together. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. Scaffold membranes from the solution with pure chloroform showed solid-wall pore structure. In contrast, nano-fibrous membranes were fabricated from the solution with pure 1,4-dioxane. In case of mixed solvents, the scaffold membranes showed various structures with changing composition of the solvents. When 1,4-dioxane content was lower than 20 wt% in the solvent, scaffold membrane showed solid-wall pore structure. When the content was 20 wt%, scaffold membranes with macropores with the maximum size of $100{\mu}m$ was obtained. In the concentration range of 1,4-dioxane over 25 wt%, the scaffold membranes showed nano-fibrous structures. In this range, the fibers showed different diameters with changing composition of the solvent. The minimum fiber diameter was about $15{\mu}m$, when 1,4-dioxane composition was 80 wt%. These results indicate that the composition of the solvent showed a significant effect on the structure of scaffold membrane.

Comparison of teratogenecity induced by nano- and micro-sized particles of zinc oxide in cultured mouse embryos

  • Jung, A Young;Jung, Ki Youn;Lin, Chunmei;Yon, Jung-Min;Lee, Jong Geol;Lee, Beom Jun;Yun, Young Won;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • The increasing uses of zinc oxide nanoparticles (nZnO) in industrial and personal care products raise possible danger of using nZnO in human. To determine whether ZnO induces size-dependent anomalies during embryonic organogenesis, mouse embryos on embryonic day 8.5 were cultured for 2 days under 50, 100, and $150{\mu}g$ of nZnO (< 100 nm) or micro-sized ZnO (mZnO; $80{\pm}25{\mu}m$), after which the morphological changes, cumulative quantity of Zn particles, and expressions of antioxidant and apoptotic genes were investigated. Although embryos exposed to $50{\mu}g$ of ZnO exhibited no defects on organogenesis, embryos exposed to over $100{\mu}g$ of ZnO showed increasing anomalies. Embryos treated with $150{\mu}g$ of nZnO revealed significant changes in Zn absorption level and morphological parameters including yolk sac diameter, head length, flexion, hindbrain, forebrain, branchial bars, maxillary process, mandibular process, forelimb, and total score compared to the same dose of mZnO-treated embryos. Furthermore, CuZn-superoxide dismutase, cytoplasmic glutathione peroxidase (GPx) and phospholipid hydroperoxidase GPx mRNA levels were significantly decreased, but caspase-3 mRNA level was greatly increased in nZnO-treated embryos as compared to normal control embryos. These findings indicate that nZnO has severer teratogenic effects than mZnO in developing embryos.

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

Effects of Preflocculated Filler Flocs and Nano-sized Coating Binder on Fold Cracking of Coated Paper (충전물 선응집체 크기와 나노 바인더에 의한 도공지의 접힘터짐 변화)

  • Im, Wanhee;Seo, Dongil;Oh, Kyudeok;Jeong, Young Bin;Youn, Hye Jung;Lee, Hak Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.91-97
    • /
    • 2015
  • Papermakers wish to increase the filler content of printing and writing grades because it allows saving in production cost through fiber replacement and improving the formation, and optical and printing properties of the paper. However, high filler loading in the base paper has negative side effects. It reduces the mechanical properties of paper and induces cracking at the fold after coating process. Fold cracking is one of the most frequent quality complaints for magazines, high quality books, etc. Two approaches were examined as methods to reduce fold cracking. One approach was to use preflocculated fillers, which was expected to reduce the fold cracking because it would decrease the interfiber bonding. The other approach was to use a new coating binder that gives greater binding power and thereby provides an opportunity of reducing the fold cracking of coated paper. When filler preflocculation was employed in producing the base paper, fold cracking becomes more severe than conventional filler loading condition. On the other hand, use of nano sized binder in coating improved the tensile properties of the coating layer and thereby decreased the crack area. It was shown that tensile properties of coating layer played an important role in fold cracking of coating.

Harmfulness of Particulate Matter in Disease Progression (미세먼지의 질병에 미치는 유해성)

  • Choi, Jong Kyu;Choi, In Soon;Cho, Kwang Keun;Lee, Seung Ho
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.191-201
    • /
    • 2020
  • As society develops rapidly, environmental pollution is becoming a greater risk factor threatening human health. One of the major causes of air pollution that affects human health is particulate matter (PM), which contains a heterogeneous mixture of different particle sizes and chemical compositions. PM is classified by size into general PM (PM10; diameter below 10 ㎛) and fine PM (PM2.5; diameter below 2.5 ㎛). PM2.5 can pass through the respiratory tract into the circulatory system and thence throughout the body. PM2.5 is known to stimulate oxidative stress and inflammatory responses to cells, promoting diseases such as asthma, chronic respiratory disease, cardiovascular disease, diabetes mellitus, and immunological disorders. Although detailed molecular mechanisms for how PM stimulates disease progression still need to be elucidated, together with national efforts to reduce PM production, significant research has been conducted that demonstrates the harmfulness of PM in disease progression through in vitro and in vivo experiments. This review focuses on the harmfulness of PM in disease progression; we also introduce a biological verification method for determining the hazards of PM.

Assessment of Emitted Volatile Organic Compounds, Metals and Characteristic of Particle in Commercial 3D Printing Service Workplace (실제 3D 프린팅 작업장에서 발생하는 공기 중 유기화합물, 금속 및 입자특성 평가)

  • Kim, Sungho;Chung, Eunkyo;Kim, Seodong;Kwon, Jiwoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Objectives: 3D printing technologies have become widely developed and are increasingly being used for a variety of purposes. Recently, the evaluation of 3D printing operations has been conducted through chamber test studies, and actual workplace studies have yet to be completed. Therefore, the objective of this study was to determine the emission of volatile organic compounds(VOCs), metals, and particles from printing operations at a workplace. This included monitoring conducted at a commercial 3D printing service workplace where the processes involved material extrusion, material jetting, binder jetting, vat photo polymerization, and powder bed fusion. Methods: Area samples were collected with using a Tenax TA tube for VOC emission and MCE filter for metals in the workplace. For particle monitoring, Mini Particle Samplers(MPS) were also placed in the printer, indoor work area, and outdoor area. The objective was to analyze and identify particles' size, morphology, and chemical composition using transmission electron microscopy with energy dispersive spectroscopy(TEM-EDS) in the workplace. Results: The monitoring revealed that the concentration of VOCs and metals generated during the 3D printing process was low. However, it also revealed that within the 3D printing area, the highest concentration of total volatile organic compounds(TVOC) was 4,164 ppb at the vat photopolymerization 3D printing workplace, and the lowest was 148 ppb at the material extrusion 3D printing workplace. For the metals monitoring, chromium, which, is carcinogenic for humans, was detected in the workplace. As a characteristic of the particles, nano-sized particles were also found during the monitoring, but most of them were agglomerated with large and small particles. Conclusions: Based on the monitoring conducted at the commercial 3D printing operation, the results revealed that the concentration of VOCs and metals in the workplace were within Korea's occupational exposure limits. However, due to the emission of nano-sized particles during 3D printing operations, it was recommended that the exposure to VOCs and metals in the workplace should be minimized out of concern for workers' health. It was also shown that the characteristics of particles emitted from 3D printing operations may spread widely within an indoor workplace.