• Title/Summary/Keyword: Nano size

Search Result 2,179, Processing Time 0.025 seconds

Cervical Cancer Gene Therapy by Gene Loaded PEG-PLA Nanomedicine

  • Liu, Bo;Han, Shu-Mei;Tang, Xiao-Yong;Han, Li;Li, Chang-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4915-4918
    • /
    • 2014
  • Background and Aims: Advances in the treatment of cervical cancer over the last decade have predominantly involved the development of genes directed at molecular targets. Gene therapy is recognized to be a novel method for the treatment of cervical cancer. Genes can be administered into target cells via nanocarriers. This study aimed to develop systemically administrable nano-vectors. Floate (Fa) containing gene loaded nanoparticles (NPs) could target HeLa human cervical cancer cells through combination with receptors on the cells to increase the nuclear uptake of genetic materials. Methods: Fa was linked onto Poly (ethylene glycol)-b-poly (D, L-lactide) (PEG-PLA) to form Fa-PEG-PLA, and the resulting material was used to load plasmids of enhanced green fluorescence protein (pEGFP) to obtain gene loaded nanoparticles (Fa-NPs/DNA). Physical-chemical characteristics, in vitro release and cytotoxicity of Fa-NPs/DNA were evaluated. The in vitro transfection efficiency of Fa-NPs/DNA was evaluated in HeLa cells and human umbilical vein endothelial cells (HUVEC). PEG-PLA without Fa was used to load pEGFP from NPs/DNA as a control. Results: Fa-NPs/DNA has a particle size of 183 nm and a gene loading quantity of 92%. After 72h of transfection, Fa-NPs/DNA displayed over 20% higher transfection efficiency than NPs/DNA and 40% higher than naked DNA in HeLa cells. However, in HUVECs, no significant difference appeared between Fa-NPs/DNA and NPs/DNA. Conclusions: Fa-PEG-PLA NPs could function as excellent materials for gene loading. This nano-approach could be used as tumor cell targeted medicine for the treatment of cervical cancer.

Dead Lactobacillus plantarum Stimulates and Skews Immune Responses toward T helper 1 and 17 Polarizations in RAW 264.7 Cells and Mouse Splenocytes

  • Lee, Hyun Ah;Kim, Hyunung;Lee, Kwang-Won;Park, Kun-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.469-476
    • /
    • 2016
  • This study was undertaken to evaluate the immunomodulatory effect of dead nano-sized Lactobacillus plantarum (nLp) in RAW 264.7 cells and murine primary splenocytes. nLp is a dead, shrunken, processed form of L. plantarum nF1 isolated from kimchi (a traditional Korean fermented cabbage) and is less than 1 μm in size. It was found that nLp treatment stimulated nitric oxide (NO) production more in RAW 264.7 macrophages than pure live L. plantarum (pLp), and that the stimulatory properties were probably largely derived from its cell wall. In addition, nLp induced murine splenocyte proliferation more so than pLp; in particular, a high dose of nLp (1.0 × 1011 CFU/ml) stimulated proliferation as much as lipopolysaccharide at 2 μg/ml. Moreover, according to our cytokine profile results in splenocytes, nLp treatment promoted Th1 (TNF-α, IL-12 p70) responses rather than Th2 (IL-4, IL-5) responses and also increased Th17 (IL-6, IL-17A) responses. Thus, nLp stimulated NO release in RAW 264.7 cells and induced splenocyte proliferation more so than pLp and stimulated Th1 and Th17 cytokine production. These findings suggested that dead nLp has potential use as a functional food ingredient to improve the immune response, and especially as a means of inducing Th1/Th17 immune responses.

A Study on Enhancement of Nitrate Removal Efficiency using Surface-Modified Zero-Valent Iron Nanoparticles (표면개질된 영가철 나노입자를 이용한 질산성 질소 제거율 향상에 대한 연구)

  • Lim, Taesook;Cho, Yunchul;Cho, Changhwan;Choi, Sangil
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.517-524
    • /
    • 2016
  • In order to treat groundwater containing high levels of nitrate, nitrate reduction by nano sized zero-valent iron (nZVI) was studied using batch experiments. Compared to nitrate removal efficiencies at different mass ratios of $nitrate/Fe^0$, the removal efficiency at the mass ratio of 0.02% was the highest(54.59%). To enhance nitrate removal efficiency, surface modification of nZVI was performed using metallic catalysis such as Pd, Ni and Cu. Nitrate removal efficiency by Cu-nZVI (at $catalyst/Fe^0$ mass ratio of 0.1%) was 66.34%. It showed that the removal efficiency of Cu-nZVI was greater than that of the other catalysts. The observed rate constant ($k_{obs}$) of nitrate reduction by Cu-nZVI was estimated to $0.7501min^{-1}$ at the Cu/Fe mass ratio of 0.1%. On the other hand, TEM images showed that the average particle sizes of synthetic nZVI and Cu-nZVI were 40~60 and 80~100 nm, respectively. The results imply that catalyst effects may be more important than particle size effects in the enhancement of nitrate reduction by nZVI.

Anodization Process of the YBa2Cu3O7-x Strip Lines by the Conductive Atomic Force Microscope Tip (전도성 AFM 탐침에 의한 YBa2Cu3O7-x 스트립 라인의 산화피막 형성)

  • 고석철;강형곤;임성훈;한병성;이해성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.875-881
    • /
    • 2004
  • Fundamental results obtained from an atomic force microscope (AFM) chemically-induced direct nano-lithography process are presented, which is regarded as a simple method for fabrication nm-scale devices such as superconducting flux flow transistors (SFFTs) and single electron tunneling transistors (SETs). Si cantilevers with Pt coating and with 30 nm thick TiO coating were used as conducting AFM tips in this study. We observed the surfaces of superconducting strip lines modified by AFM anodization' process. First, superconducting strip lines with scan size 2 ${\mu}{\textrm}{m}$${\times}$2 ${\mu}{\textrm}{m}$ have been anodized by AFM technology. The surface roughness was increased with the number of AFM scanning, The roughness variation was higher in case of the AFM tip with a positive voltage than with a negative voltage in respect of the strip surface. Second, we have patterned nm-scale oxide lines on ${YBa}-2{Cu}_3{O}_{7-x}$ superconducting microstrip surfaces by AFM conductive cantilever with a negative bias voltage. The ${YBa}-2{Cu}_3{O}_{7-x}$ oxide lines could be patterned by anodization technique. This research showed that the critical characteristics of superconducting thin films were be controlled by AFM anodization process technique. The AFM technique was expected to be used as a promising anodization technique for fabrication of an SFFT with nano-channel.

Seasonal Variation of Phytoplankton Community Structure in NortheasternCoastal Waters off the Korean Peninsula

  • Kang, Yeon-Shik;Choi, Hyu-Chang;Noh, Jae-Hoon;Choi, Joong-Ki;Jeon, In-Seong
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • Phytoplankton community in the coastal waters off the northeastern Korean Peninsula were characterized from May 2002 to August 2003. Taxonomic composition, abundance and biomass were determined at two water depths at 10 sample sites. A total of 153 phytoplankton species including 121 diatoms, 28 dinoflagellates, 7 green algae and 7 other species were identified. The mean abundance of phytoplankton varied from 15 to 430 cells mL–1 in the surface layer and from 11 to 545 cells mL–1 in the bottom layer, respectively. Phytoplankton was more abundant in coastal stations relative to those in more open ocean. The most dominant species were marine diatoms such as Thalassionema nitzschioides, Licmorphora abbreviata, Chaetoceros affinis and Chaetoceros socialis. In addition, a few limnotic diatoms including Fragilaria capucina v. rumpens, the green alga Scenedesmus dimorphus, some marine dinoflagellates and Cryptomonas sp. appeared as dominant species. Mean concentration of total chlorophyll-a varied from 0.22 to 7.87 μg chl-a L–1 and from 0.45 to 6.79 μg chl-a L–1 in the surface and bottom layers, respectively. The contribution of phytoplankton each size-fractionated varied highly with season. The contribution of microphytoplankton to total biomass of phytoplankton in the surface and bottom layer was high in February and August 2003, and that of nano-phytoplankton was high in May 2002 in both surface and bottom layers.

Experimental Investigation of Nano-sized Particulate Matter Emission Characteristics under Engine Operating Conditions from Common Rail Diesel Engine (커먼레일 디젤엔진의 운전조건이 나노크기 입자상 물질 배출특성에 미치는 영향에 관한 실험적 연구)

  • Lee, Hyung-Min;Myung, Cha-Lee;Park, Sim-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • The objective of this work presented here was experimental study of steadystate and cold start exhaust nano-sized particle characteristics from common rail diesel engine. The effect of the diesel oxidation catalyst (DOC) on the particle number reduction was insignificant, however, particle number concentration levels were reduced by 3 orders of magnitude into the downstream of diesel particulate filter (DPF). In high speed and load conditions, natural regeneration of trapped particle occurred inside DPF and it was referable to increase particle number concentration. As fuel injection timing was shifted BTDC $6^{\circ}CA$ to ATDC $4^{\circ}CA$, particle number concentration level was slightly reduced, however particle number and size was increased at ATDC $9^{\circ}CA$. Nucleation type particle reduced and accumulation type particle was increased on EGR condition.

Facile Synthesis of ZnO Nanoparticles and Their Photocatalytic Activity

  • Lee, Soo-Keun;Kim, A Young;Lee, Jun Young;Ko, Sung Hyun;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2004-2008
    • /
    • 2014
  • This paper reports the facile synthesis methods of zinc oxide (ZnO) nanoparticles, Z1-Z10, using diethylene glycol (DEG) and polyethylene glycol (PEG400). The particle size and morphology were correlated with the PEG concentration and reaction time. With 0.75 mL of PEG400 in 150 mL of DEG and a 20 h reaction time, the ZnO nanoparticles began to disperse from a collective spherical grain shape. The ZnO nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and a $N_2$ adsorption-desorption studies. The Brunauer-Emmett-Teller (BET) surface areas of Z4, Z5 and Z10 were 157.083, 141.559 and 233.249 $m^2/g$, respectively. The observed pore diameters of Z4, Z5 and Z10 were 63.4, 42.0 and 134.0 ${\AA}$, respectively. The pore volumes of Z4, Z5 and Z10 were 0.249, 0.148 and 0.781 $cm^3/g$, respectively. The photocatalytic activity of the synthesized ZnO nanoparticles was evaluated by methylene blue (MB) degradation, and the activity showed a good correlation with the $N_2$ adsorption-desorption data.

Alkali-Metal Ion Catalysis and Inhibition in SNAr Reaction of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides in Anhydrous Ethanol

  • Kim, Min-Young;Ha, Gyu Ho;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2438-2442
    • /
    • 2014
  • A kinetic study is reported for $S_NAr$ reaction of 1-fluoro-2,4-dinitrobenzene (5a) and 1-chloro-2,4-dinitrobenzene (5b) with alkali-metal ethoxides (EtOM, M = Li, Na, K and 18-crown-6-ether complexed K) in anhydrous ethanol. The second-order rate constant increases in the order $k_{EtOLi}$ < $k_{EtO^-}$ < $k_{EtONa}$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for the reaction of 5a and $k_{EtOLi}$ < $k_{EtONa}$ < $k_{EtO^-$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for that of 5b. This indicates that $M^+$ ion behaves as a catalyst or an inhibitor depending on the size of $M^+$ ion and the nature of the leaving group ($F^-$ vs. $Cl^-$). Substrate 5a is more reactive than 5b, although the $F^-$ in 5a is ca. $10pK_a$ units more basic than the $Cl^-$ in 5b, indicating that the reaction proceeds through a Meisenheimer complex in which expulsion of the leaving group occurs after the rate-determining step (RDS). $M^+$ ion would catalyze the reaction by increasing either the nucleofugality of the leaving group through a four-membered cyclic transition state or the electrophilicity of the reaction center through a ${\pi}$-complex. However, the enhanced nucleofugality would be ineffective for the current reaction, since expulsion of the leaving group occurs after the RDS. Thus, it has been concluded that $M^+$ ion catalyzes the reaction by increasing the electrophilicity of the reaction center through a ${\pi}$-complex between $M^+$ ion and the ${\pi}$-electrons in the benzene ring.

Effects of Mn Substitution on Crystallographic and Magnetic Properties of Li-Zn-Cu Ferrites

  • Lee, Young Bae;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2014
  • The effects of manganese substitution on the crystallographic and magnetic properties of Li-Zn-Cu ferrite, $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$ ($0.0{\leq}x{\leq}0.8$), were investigated. Ferrites were synthesized via a conventional ceramic method. We confirmed the formation of crystallized particles using X-ray diffraction, field emission scanning electron microscopy and $M{\ddot{o}}ssbauer$ spectroscopy. All of the samples showed a single phase with a spinel structure, and the lattice constants linearly decreased as the substituted manganese content increased, and the particle size of the samples also somewhat decreased as the doped manganese content increased. All the $M{\ddot{o}}ssbauer$ spectra can be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites, and one doublet. The cation distribution was determined from the variation of the $M{\ddot{o}}ssbauer$ parameters and of the absorption area ratio. The magnetic behavior of the samples showed that an increase in manganese content led to a decrease in the saturation magnetization, whereas the coercivity was nearly constant throughout. The maximum saturation magnetization was 73.35 emu/g at x = 0.0 in $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$.

The Synthesis of Nano-sphere Titanium-oxide and Cosmetic Applications (광반사체로 사용되는 $TiO_2$ 나노구형체의 합성과 화장품으로의 적용 연구)

  • Lee, Ji Hye;Kim, Joon Woo;Kim, Ji Man;Choung, Suk-Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.231-238
    • /
    • 2013
  • In this study, the $TiO_2$ nano spheres were synthesized by Sol-gel method to give an excellent UV-blocking effect and increase waste adsorption. The pH value was adjusted to obtain a superb UV-blocking effect and adsorption capacity due to the high surface area which is the characteristics of porosity. Base treated $TiO_2$ showed outstanding characteristics. The adsorption of gycerine onto the $TiO_2$ sample using TGA resulted in a high surface area of 1.16 mg/mg. This also showed a high reflectance in the UV-A region. In order to find the optimum dispersion, inorganic powder particles were maintained their sizes as 180 nm for about 6 months. The size of particles were measured using ester oil and silicon oil. Overall, the results reveal that $TiO_2$ has an excellent capability sunscreen in the UV-A region and skin waste adsorption.