• 제목/요약/키워드: Nano process

검색결과 2,520건 처리시간 0.031초

AAO를 이용한 나노 패턴 마스터 제작에 관한 연구 (Study on Fabrication of Highly Ordered Nano Patterned Master by Using Anodic Aluminum Oxidation)

  • 신홍규;권종태;서영호;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.368-370
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. The resulting good filled uniform nano molded structure through hot embossing molding process shows the validity of the fabricated nano pattern masters.

  • PDF

나노 인장시험을 위한 압축 시험기용 인장시편 제작에 관한 연구 (Fabrication of Nano-Size Specimens for Tensile Test Employing Nano-Indentation Device)

  • 임태우;양동열
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.911-916
    • /
    • 2015
  • In the nano/micro scale, material properties are dependent on the size-scale of a structure. However, conventional micro-scale tensile tests have limitations to obtain reliable values of nano-scale material properties owing to residual stress and elastic slippage in the gripping/aligning process. The indenter-driven nano-scale tensile test provides prominent advantages simple testing device, high-quality nano-scale metallic specimen with negligible residual stress. In this paper, two-types of specimens (a specimen with multi-testing parts and a specimen with a single-testing part) are discussed. Focused ion beam (FIB) is employed to fabricate a nano-scale specimen from a thin nickel film. Using the specimen with a single-testing part, we obtained a nano-scale stress-strain curve of electroplated nickel film.

확산펌프 기반의 O2 축전결합 플라즈마를 이용한 PMMA와 폴리카보네이트의 건식 식각 (Dry Etching of PMMA and Polycarbonate in a Diffusion Pump-based Capacitively Coupled O2 Plasma)

  • 박주홍;이성현;최경훈;노호섭;이제원
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.421-426
    • /
    • 2009
  • We report on the capacitively coupled O2 plasma etching of PMMA and polycarbonate (PC) with a diffusion pump. Plasma process variables were process pressure and CCP power at 5 sccm $O_2$ gas flow rate. Characterization was done in order to analyze etch rate, etch selectivity, surface roughness, and morphology using stylus surface profilometry and scanning electron microscopy. Self bias decreased with increase of process pressure in the range of 25$\sim$180 mTorr. We found an important result for optimum pressure for the highest etch rate of PMMA and PC, which was 60 mTorr. PMMA and PC had etch rates of 0.46 and 0.28 ${\mu}m$/min under pressure conditions, respectively. More specifically, etch rates of the materials increased when the pressure changed from 25 mTorr to 60 mTorr. However, they reduced when the pressure increased further after 60 mTorr. RMS roughnesses of the etched surfaces were in the range of 2.2$\sim$2.9 nm. Etch selectivity of PMMA to a photoresist was $\sim$1.5:1 and that of PC was $\sim$0.9:1. Etch rate constant was about 0.04 ${\mu}m$/minW and 0.02 ${\mu}m$/minW for PMMA and PC, respectively, with the CCP power change at 5 sccm $O_2$ and 40 mTorr process pressure. PC had more erosion on the etched sidewall than PMMA did. The OES data showed that the intensity of the oxygen atomic peak (777.196 nm) proportionally increased with the CCP power.

단일 이온 인식형 이송 제어 기능성 나노채널 기술 (Functional Nanochannels to Control Ion Transportation with Monomolecule Selectivity)

  • 김정환;이응숙;황경현;유영은;윤재성
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권4호
    • /
    • pp.249-255
    • /
    • 2015
  • 이온 및 분자 이송제어를 위한 기능성 나노채널의 구현을 통하여 이온/분자의 상대적 크기에 의존하는 기존 분리 및 이송 기술의 선택효율, 투과도, 에너지 소비 측면에서의 기존 분리 기술의 한계를 극복하기 위한 새로운 개념의 분리 기술을 제시 하고자 하였다. 이를 위해 나노채널 플랫폼 가공 기술 개발, 나노채널 표면 기능화 기술 개발 등의 연구를 수행하였으며, 나노채널에 대한 전압인가 및 유량 조절이 가능한 이온이송제어 측정 시스템을 제작하고, 다층 금속 멤브레인을 이용하여 선택적으로 특정 이온($Cl^-$)의 이송을 95% 이상 차단하였다. 본 연구를 통하여 세포막에 존재하며 물분자만을 매우 효율적으로 투과시키는 채널인 아쿠아포린의 기능 및 특성을 모방한 신개념의 분리기술 구현을 위한 기반 기술 개발을 수행하였으며, 향후 지속적인 연구를 통하여 차세대 정수/담수, 휴대형 인공신장, 인공 감각 기관 등의 핵심 기반 기술이 될 것으로 예상한다.

이광자 광중합 공정을 이용한 3차원 미세구조물 제작기술 동향 (Recent Progress in the Nanoscale Additive Layer Manufacturing Process Using Two-Photon Polymerization for Fabrication of 3D Polymeric, Ceramic, and Metallic Structures)

  • 하철우;임태우;손용;박석희;박상후;양동열
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.265-270
    • /
    • 2016
  • Recently, many studies have been conducted on the nano-scale fabrication technology using twophoton- absorbed polymerization induced by a femtosecond laser. The nano-stereolithography process has many advantages as a technique for direct fabrication of true three-dimensional shapes in the range over several microns with sub-100 nm resolution, which might be difficult to obtain by using general nano/microscale fabrication technologies. Therefore, two-photon induced nano-stereolithography has been recently recognized as a promising candidate technology to fabricate arbitrary 3D structures with sub-100 nm resolution. Many research works for fabricating novel 3D nano/micro devices using the two-photon nano-stereolithography process, which can be utilized in the NT/BT/IT fields, are rapidly advancing.

Application of Inkjet Technology in Flat Panel Display

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.913-918
    • /
    • 2005
  • It is expected that the inkjet technology offers prospect for reliable and low cost manufacturing of FPD (Flat Panel Display). This inkjet technology also offers a more simplified manufacturing process for various part of the FPD than conventional process. For example, recently the novel manufacturing processes of color filter (C/F) in LCD, or RGB patterning in OLED by inkjet printing method have been developed. This elaborates will be considered as the precious point of manufacturing process for the mass production of enlarged-display panel with a low price. On this point of view, we would like to review the status of inkjet technology in FPD, with some results on forming micro line by inkjet patterning of suspension type silver nano ink as below. We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF

PEDOT:PSS/MWNT 나노복합체의 나노주름 임프린팅을 통한 투명전극-배향막 복합 기능 박막의 액정 구동 (Liquid Crystal Driving of Transparent Electrode-Alignment Layer Multifunctional Thin Film by Nano-Wrinkle Imprinting of PEDOT:PSS/MWNT Nanocomposite)

  • 장종인;정해창
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.8-17
    • /
    • 2023
  • 기존 liquid crystal display(LCD) 공정에서 Indium Tin Oxide(ITO) 투명전극과 폴리이미드 배향막의 러빙 공정은 액정을 정렬하고 전계를 인가하기 위하여 필수적인 공정이다. 하지만 ITO의 증착은 높은 진공을 요구하며, 러빙 공정은 정전기에 의해 소자가 손상될 수 있는 단점이 존재한다. 본 논문에서는 기존 ITO 투명전극을 대체하기 위하여 PEDOT:PSS와 Multi-wall carbon nanotube(MWNT)를 혼합하여 PEDOT:PSS 나노복합체를 제조하고, 러빙 공정을 대체하기 위하여 나노 주름 구조 몰드를 통한 나노임프린팅을 통하여 박막을 형성함으로써 기존 액정 디스플레이의 투명전극과 배향막 두 가지 박막을 PEDOT:PSS/MWNT 나노복합체 박막 하나만으로 기능하게 하여 공정을 단순화 하였다. 전사된 나노 주름을 따라 액정이 잘 배향됨을 확인하였으며, 이를 기반으로 만들어진 액정 셀에서 박막 내 MWNT의 함량이 높아질수록 박막의 전기전도도가 증가하여 낮은 구동 전압과 빠른 응답 속도를 갖는다는 것을 확인하였다. 본 연구를 통해 공정 단순화와 용액공정에 의한 공정 단가 절감, 기존 러빙 공정의 단점을 해결하는데 기여 할 수 있을 것으로 기대된다.

BCl3및 BCl3/Ar 고밀도 유도결합 플라즈마를 이용한 GaAs와 AlGaS 반도체 소자의 건식식각 (Dry Etching of GaAs and AlGaAs Semiconductor Materials in High Density BCl3and BCl3/Ar Inductively Coupled Plasmas)

  • 임완태;백인규;이제원;조관식;전민현
    • 한국재료학회지
    • /
    • 제13권10호
    • /
    • pp.635-639
    • /
    • 2003
  • We investigated dry etching of GaAs and AiGaAs in a high density planar inductively coupled plasma system with BCl$_3$and BCl$_3$/Ar gas chemistry. A detailed etch process study of GaAs and ALGaAs was peformed as functions of ICP source power, RIE chuck power and mixing ratio of $BCl_3$ and Ar. Chamber process pressure was fixed at 7.5 mTorr in this study. The ICP source power and RIE chuck power were varied from 0 to 500 W and from 0 to 150 W, respectively. GaAs etch rate increased with the increase of ICP source power and RIE chuck power. It was also found that etch rates of GaAs in $15BCi_3$/5Ar plasmas were relatively high with applied RIE chuck power compared to pure 20 sccm $BCl_3$plasmas. The result was the same as AlGaAs. We expect that high ion-assisted effect in $BCl_3$/Ar plasma increased etch rates of both materials. The GaAs and AlGaAs features etched at 20 sccm $BCl_3$and $15BCl_3$/5Ar with 300 W ICP source power, 100 W RIE chuck power and 7.5 mTorr showed very smooth surfaces(RMS roughness < 2 nm) and excellent sidewall. XPS study on the surfaces of processed GaAs also proved extremely clean surfaces of the materials after dry etching.

초미세기포-용존오존부상(DOF)공정을 이용한 염색폐수 처리수의 재이용 (Reclamation of Effluent Textile Wastewater Using Micro/nano Bubbles-Dissolved Ozone Flotation Process)

  • 정병길;이기형;정진희;장성호;조도현;성낙창
    • 한국환경과학회지
    • /
    • 제20권3호
    • /
    • pp.291-299
    • /
    • 2011
  • The main objectives of this research are to investigate characteristics of ozone solubility due to low solubility of conventional bubbles-ozone generators, evaluate the treatment characteristics of reclaiming textile wastewater for industrial water by means of micro/nano bubbles-dissolved ozone flotation(MNB-DOF) process. The textile wastewater used in this research was obtained from final effluent of the textile wastewater in B city. There is a 400L reactor which consists of a micro-nano bubble system and a ozone generator for experiments. As a result of generating micro-nano bubbles (below $0.5{\mu}m$) by using of MNB-DOF process, it improved ozone solubility due to higher ozone transfer rates. Consequently, the shorter ozonation time clearly indicates the lower power costs. The reported results clearly indicated that MNB-DOF process can be effectively and inexpensively. Results of the experiments through MNB-DOF process in this study satisfy all reclaiming standards as industrial water: pH 6.5~8.5, SS 10 mg/L or below, $BOD_5$) 6 mg/L or below, turbidity 10 NTU or below, Coliforms 1,000/100 mL or below. Therefore there is a possibility of the reclaiming of the textile wastewater as industrial water.

FTS를 이용한 나노표면개질공정의 공정변화와 소재에 따른 표면특성 (Surface Characteristics based on Material and Process Changes in Surface Treatment using Fast Tool Servo)

  • 김미루;이득우;이승준;;김종만;장남수
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.639-646
    • /
    • 2015
  • A treatment for improving the characteristics of a surface is very important in increasing the life of machine parts. Many studies have been carried out on the surface characteristics after such treatments. For enhanced eco-technology, an alternative to a conventional chemical surface treatment process is essential. Ultrasonic nano-crystal surface modification (UNSM) technology is a physical environmentally friendly surface treatment method. This technology was developed in domestic and currently being used. As the mechanism of UNSM technology, a ball tip attached to an ultrasonic vibration device strikes the metal surface at nearly 20,000 times per second. The resulting modified surface layer improves the surface characteristics. This paper describes a self-developed fast tool servo system applied to the UNSM process as a vibration module within a high-frequency bandwidth. After describing the surface modification process based on the material and process changes, the surface characteristics are compared.