• Title/Summary/Keyword: Nano powder,

Search Result 1,144, Processing Time 0.041 seconds

Development of Nano-sized WC Powder for Hardmetals

  • Yamamoto, Yoshiharu;Mizukami, Masahiko
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.342-343
    • /
    • 2006
  • In order to develop the nano-sized WC powder that improved the hardness of hardmetals, carbothermal reduction of WO3 by C was examined by using the thermogravimetric analysis. At the direct carburization reaction path of $WO_3{\rightarrow}WO_{2.72}{\rightarrow}WO_2{\rightarrow}W{\rightarrow}W_2C{\rightarrow}WC$, the nano-sized grain was generated at the reaction stage $WO_{2.72}$ to $WO_2$ and W. For trial production, the intermediate products which consists of metal and carbide phases obtained by the first heating has been carburized to the final WC powder. We succeeded in the development of the WC powder of about 70nm. In addition, the nano-sized WC powder in which the vanadium of the most effective grain growth inhibitor was uniformly dispersed was developed.

  • PDF

Characteristics on the Surge Capability of Bi-based Varistor Fabricated with ZnO Nano-powder (ZnO 나노분말로 제조한 Bi계 바리스터의 써지내량 특성)

  • Wang, Min-Sung;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.862-867
    • /
    • 2006
  • Bi-based nano-varistors and micro-varistors fabricated with each ZnO nano-powder and micro-powder were studied about characteristics on the surge capability in this study. ZnO nano-varistors were sintered in air at $1050^{\circ}C$ for 2 hr. The voltage-current and residual voltage properties of ZnO nano-varistor were compared with their of ZnO micrio-varistor. As a result of these properties, our ZnO nano-varistor has about 3 times at operating voltage as compared with conventional ZnO varistor fabricated with micro-powder and the residual voltage was 8.06 kV at nominal discharge current 101kA in the lighting impulse current test. And then the residual voltage rate 1.72 of our nano-varistor has had better performance than the 1.79 of micro-varistor because ZnO nano-varistor has shown much quick response property because of increasing effective cross-section area. Also, to analysis surge capability took thermal images for pyrexia temperature distribution with each of the varistors after operating varistors. Nano-varistor doesn't have shown local overheating and can confirm accurate temperature grade on the surface of its.

Densification Behaviour of Magnesium Powders during Cold Isostatic Pressing using the Finite Element Method (유한요소법을 이용한 마그네슘 분말의 냉간정수압 공정시 치밀화 거동 해석)

  • Yoon, Seung-Chae;Kwak, Eun-Jeong;Choi, Won-Hyoung;Kim, Hyoung-Kun;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.362-366
    • /
    • 2007
  • Magnesium and magnesium alloys are promising materials for light weight and high strength applications. In order to obtain homogeneous and high quality products in powder compaction and powder forging processes, it is very important to control density and density distributions in powder compacts. In this study, a model for densification of metallic powder is proposed for pure magnesium. The mode] considers the effect of powder characteristics using a pressure-dependent critical density yield criterion. Also with the new model, it was possible to obtain reasonable physical properties of pure magnesium powder using cold iso-state pressing. The proposed densification model was implemented into the finite element method code. The finite element analysis was applied to simulating die compaction of pure magnesium powders in order to investigate the density and effective strain distributions at room temperature.

Evaluation on the Applicability as Filler materials of Ni-Based Super Alloying Nano Size Powder by Pulsed Wire Evaporation(PWE) Method (전기폭발법으로 제조된 니켈기 초내열합금 나노분말의 용가재로의 응용가능성에 관한 평가)

  • Kim, Gyeong-Ho;Lee, Min-Gu;Kim, Gwang-Ho;Lee, Chang-Gyu;Kim, Heung-Hui
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.168-170
    • /
    • 2005
  • Nickel base brazes containing boron and silicon as melting point depressants are used extensively in the joining and repair of hot-section components in next generation nuclear reactor and aero-engine. Therefore, the present study has investigated the preliminary applicability of nickel based alloying nano powders. Nano Ni-based alloying powders synthesized by Pulsed Wire Evaporation (PWE) method. It's powder morphology and phase transformation temperature were analyzed by scanning electron microscopy, transmission electron microscopy, and differential scanning calorimeter(DSC). The powder particle size was approximately 10${\sim}$100nm and exhibits a quite even equiaxed shape. The results of DSC measurement show that both the nano Inconel 625 nano powder and Inconel 718 nano powder presents similar liquidus temperatures approximately $1373^{\circ}C$ and $1380^{\circ}C$ respectively.

  • PDF

Effect of Grain Size Control and Binder Additions on the Soft Magnetic Properties of Fe-based Nanocrystalline Powder Cores (Fe계 나노결정 분말코아의 연자성특성에 미치는 입도제어 및 바인더 첨가의 영향)

  • Cho E.K.;Cho H.J.;Kwon H.T.;Cho E.M.;Ryu H.H.;Sohn K.Y.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.256-262
    • /
    • 2006
  • The amorphous $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy strip was pulverized to get a flake-shaped powder after annealing at $425^{\circ}C$ for 90 min and subsequently ground to obtain finer flake-shaped powder by using a ball mill. The powder was mixed with polyimide-based binder of $0.5{\sim}3wt%$, and then the mixture was cold compacted to make a toroidal powder core. After crystallization treatment for 1 hour at $380{\sim}600^{\circ}C$, the powder was transformed from amorphous to nanocrystalline with the grain size of $10{\sim}15nm$. Soft magnetic characteristics of the powder core was optimized at $550{\sim}600^{\circ}C$ with the insulating binder of 3wt%. As a result, the powder core showed the outstanding magnetic properties in terms of core loss and permeability, which were originated from the optimization of the grain size and distribution of the insulating binder.

Fabrication of Ag doped Hydroxyapatite and its Antimicrobial Effects with the Particle Size

  • Oh, Kyung-Sik;Kim, Kyung-Ja;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.192-196
    • /
    • 2001
  • Ag doped Hydroxyapatite powder in nano-scale was successfully synthesized either by co-precipitation or by ion exchange route. The fabricated powder was successfully dispersed through freeze drying due to the prevention of secondary particles. The antimicrobial effects of nano-HAp against E.coli was superior to micron ones not only in its strength but also in duration.

  • PDF

Fabrication of Ceramic Particles Deposited Nano-web using Electrospinning Process and Its Far-infrared Ray Emission Property (원적외선 방출 특성을 갖는 나노 웹의 제조 및 원적외선 방사 특성에 관한 연구)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.118-122
    • /
    • 2010
  • The interest in textile which has far-infrared ray emissive property has been increased in the field of biophysics and medicine. In this study, far-infrared ray emissive polyurethane nano-web was obtained using electrospinning of polyurethane(PU) solution mixed with ceramics powder and far-infrared ray emissive properties of nano-web were evaluated by measuring far-infrared ray emission power and emissivity(%). To investigate the influence of concentration of ceramics powder in PU solution and temperature for far-infrared ray emissive properties, far-infrared ray emissivity was measured at varied temperature using various nano-web including varied concentration of ceramics powder. Polyurethane nano-web was characterized by SEM to observe the deposition of ceramics powder on polyurethane nano-web surface. The far-infrared ray emissivity was increased with the concentration of ceramics powder in the nano-web. The far-infrared ray emission power was enhanced with increasing temperature of the samples; however, far-infrared ray emissivity was decreased with increasing temperature because the increase of emission power of ceramic containing nano-web was lower than the emission power of black body one.

Synthesis of nano porous indium tin oxide by sol-gel combustion hybrid method (졸겔 연소법에 의한 nano crystalline ITO제작 및 특성)

  • Jung, Ki-Young;Kwak, Dong-Joo;Sung, Youl-Moon;Park, Cha-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1328_1329
    • /
    • 2009
  • Nano porous indium tin oxide (ITO) powder was synthesized employing a new route sol-gel combustion hybrid method using Ketjen Black as a fuel. The nano porous ITO powder was composed of $SnCl_4$-98.0% and $In(NO_3)_3{\cdot}XH_2O$-99.999%, produce with a $NH_4OH$ with sol-gel method as a catalyst [1,2]. Crystal structures were examined by powder X-ray diffraction (XRD), and those results show shaper intensity peak at $25.6^{\circ}(2{\Theta})$ of $SnO_2$ by increased sintering temperature. A particle morphology as well as crystal size was investigated by scanning electron microscopy(FE-SEM), and the size of the nano porous powder was found to be in the range of 20~30nm. ITO films could controlled by nano porous powder at various sintering temperature in this paper[3,4]. The sol-gel combustion method was offered simple and effective route for the synthesis of nano porous ITO powder[5].

  • PDF

Optimization of Wet Reduction Processing for Nanosized Cobalt Powder (나노코발트 분말합성을 위한 액상환원공정의 최적화)

  • Hong, Hyun-Seon;Jung, Hang-Chul;Kim, Geon-Hong;Kang, Lee-Seung;Suk, Han-Gil
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.191-196
    • /
    • 2013
  • Nano-sized cobalt powder was fabricated by wet chemical reduction method at room temperature. The effects of various experimental variables on the overall properties of fabricated nano-sized cobalt powders have been investigated in detail, and amount of NaOH and reducing agent and dropping speed of reducing agent have been properly selected as experimental variables in the present research. Minitab program which could find optimized conditions was adopted as a statistic analysis. 3D Scatter-Plot and DOE (Design of Experiments) conditions for synthesis of nano-sized cobalt powder were well developed using Box-Behnken DOE method. Based on the results of the DOE process, reproducibility test were performed for nano-sized cobalt powder. Spherical nano-sized cobalt powders with an average size of 70-100 nm were successfully developed and crystalline peaks for the HCP and FCC structure were observed without second phase such as $Co(OH)_2$.