• Title/Summary/Keyword: Nano patterns

Search Result 435, Processing Time 0.026 seconds

Free vibration analysis of FG porous spherical cap reinforced by graphene platelet resting on Winkler foundation

  • Xiangqian Shen;Tong Li;Lei Xu;Faraz Kiarasi;Masoud Babaei;Kamran Asemi
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.11-26
    • /
    • 2024
  • In this study, free vibration analysis of FG porous spherical cap reinforced by graphene platelets resting on Winkler-type elastic foundation has been surveyed for the first time. Three different types of porosity patterns are considered for the spherical cap whose two types of porosity patterns in the metal matrix are symmetric and the other one is uniform. Besides, five GPL patterns are assumed for dispersing of GPLs in the metal matrix. Tsai-Halpin and extended rule of the mixture are used to determine the Young modulus and mass density of the shell, respectively. Employing 3D FEM elasticity in conjunction with Hamilton's Principle, the governing motion equations of the structure are obtained and solved. The impact of various parameters including porosity coefficient, various porosity distributions in conjunction with different GPL patterns, the weight fraction of graphene Nano fillers, polar angles and stiffness coefficient of elastic foundation on natural frequencies of FG porous spherical cap reinforced by GPLs have been reported for the first time.

Surface Damage Characteristics of Self-Assembled Monolayer and Its Application in Metal Nano-Structure Fabrication (자기 조립 분자막의 표면파손특성 및 미세 금속 구조물 제작에의 응용)

  • Sung, In-Ha;Kim, Dae-Eun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.40-44
    • /
    • 2002
  • The motivation of this work is to use SAM(Self-Assembled Monolayer) for developing a rapid and flexible non-photolithographic nano-structure fabrication technique which can be utilized in micro-machining of metals as well as silicon-based materials. The fabrication technique implemented in this work consists of a two-step process, namely, mechanical scribing followed by chemical etching. From the experimental results, it was found that thiol on copper surface could be removed even under a few nN normal load. The nano-tribological characteristics of thiol-SAM on various metals were largely dependent on the native oxide layer of metals. Based on these findings, nano-patterns with sub-micrometer width and depth on metal surfaces such as Cu, Au and Ag could be obtained using a diamond-coated tip.

  • PDF

Silicon Nano Patterning Using Focused ion Beam: Simulation and Fabrication (집속이온빔을 이용한 실리콘 나노 패터닝: 시뮬레이션과 가공)

  • Han J.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.489-490
    • /
    • 2006
  • To establish fabrication techniques for nano structure understanding of focused ion beam (FIB) milling process is required. In this study the mathematical model containing the factors related to FIB milling is developed to acquire the optimal fabrication condition. Then, the model is verified by comparison with various nano pattern fabricated in actual FIB system. Consequently, it is demonstrated that the nano patterns with the smallest pitch can be fabricated using developed FIB milling model.

  • PDF

High Concentrated Silver Nano Ink Formulation for the Inkjet Applications (잉크젯 응용기술을 위한 고농도 은 나노 잉크 배합)

  • Kim, Tae-Hoon;Cho, Hye-Jin;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.559-560
    • /
    • 2006
  • Inkjet Printing is very attractive method for direct patterns with no masks, In order to Achieve direct printing with nano metal, It is often necessary to print them with highly concentrated Ink We research the High Concentrated silver nano ink. Formulation which has a good thermal stability and storage stability and jet stability using a ethylene glycol ether. Normally Alcohol-based inks can be sensitive But High boiling point ethylene glycol ether base Ink is creating a stable meniscus and minimum maintenance issues. We are reaching a 50~60wt% high Silver Ink using a Hydrophilic Ag Nano powder. (30~50nm)

  • PDF

Highly Dispersed CuO Nanoparticles on SBA-16 Type Mesoporous Silica with Cyclam SBA-16 as a Precursor

  • Prasetyanto, Eko Adi;Sujandi, Sujandi;Lee, Seung-Cheol;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2359-2362
    • /
    • 2007
  • MALDI-TOF-MS technique was applied to obtain structural and compositional information of synthetic polyamides, Nylon6 and Nylon66. Mass spectra of both the original and the hydrolyzed polyamide samples were analyzed using the self calibration method as well as the internal calibration method with the standard materials of known masses. The MALDI-TOF mass spectra of Nylon6 samples showed the presence of protonated, sodiated, and potassiated ions that were assigned to cyclic and NH2/COOH terminated linear oligomers. From the MALDI-TOF mass spectra of Nylon66 samples, the potassiated linear oligomers with three different end groups are identified as well as the cyclic oligomers, i.e., NH2/COOH terminated oligomers, NH2/NH2 terminated oligomers, and COOH/COOH terminated oligomers. Full characterization of the molecular species and end groups present in the polyamide samples has been achieved, and also the changes in mass spectral patterns after the hydrolysis of the samples are presented.

Development of a Nano Replication Printing(nRP) Process using a Voxel Matrix Scanning Scheme (복셀 메트릭스 스캐닝법에 의한 나노 복화(複畵)공정 재발)

  • 박상후;임태우;양동열;이신욱;공홍진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.210-217
    • /
    • 2004
  • In this study, a new process, named as nano replication printing(nRP) process, is developed for printing any figure in the range of several micrometers by using voxel matrix scanning scheme. In this newly developed process, a femto-second laser is scanned on a photosensitive monomer resin in order to induce polymerization of the liquid resin according to a voxel matrix which is transformed from bitmap format file. After the polymerization, a droplet of ethanol is dropt to remove the unnecessary remaining liquid resin and then the polymerized figures with nano-scaled precision are only remaining on the glass plate. By the nRP process, any figure file of bitmap format could be reproduced as nano-scaled precision replication in the range of several micrometers. Also, nano/micro-scaled patterns for an extremely wide range of applications would become a technologically feasible reality. Some of figures with nano-scaled precision were printed in scaled replication as examples to prove the usefulness of this study.

Characteristics of Thick Film Gas Sensors Using Nano ZnO:CNT (나노 ZnO:CNT를 이용한 후막 가스센서의 특성연구)

  • Yoon, So-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.413-416
    • /
    • 2014
  • The effects of an addition of CNT on the sensing properties of nano ZnO:CNT-based gas sensors were studied for $H_2S$ gas. The nano ZnO sensing materials were grown by a hydrothermal reaction method. The nano ZnO:CNT was prepared by ball-milling method. The weight range of the CNT addition on the ZnO surface was from 0 to 10%. The nano ZnO:CNT gas sensors were fabricated by a screen-printing method on alumina substrates. The structural and morphological properties of the ZnO:CNT sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns revealed that nano ZnO:CNT powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The size of the ZnO was about 210 nm, as confirmed by SEM images. The sensitivity of the nano ZnO:CNT-based sensors was measured for 5 ppm of $H_2S$ gas at room temperature by comparing the resistance in air with that in target gases.

Improvement in Light Extraction Efficiency of 380 nm UV-LED Using Nano-patterned n-type Gan Substrate (나노 구조의 패턴을 갖는 n-type GaN 기판을 이용한 380 nm UV-LED의 광 추출 효율 개선)

  • Baek, Kwang-Sun;Jo, Min-Sung;Lee, Young-Gon;Sadasivam, Karthikeyan Giri;Song, Young-Ho;Kim, Seung-Hwan;Kim, Jae-Kwan;Jeon, Seong-Ran;Lee, June-Key
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.273-276
    • /
    • 2011
  • Ultraviolet (UV) light emitting diodes (LEDs) were grown on a patterned n-type GaN substrate (PNS) with 200 nm silicon-di-oxide (SiO2) nano pattern diameter to improve the light output efficiency of the diodes. Wet etched self assembled indium tin oxide (ITO) nano clusters serve as a dry etching mask for converting the SiO2 layer grown on the n-GaN template into SiO2 nano patterns by inductively coupled plasma etching. PNS is obtained by n-GaN regrowth on the SiO2 nano patterns and UV-LEDs were fabricated using PNS as a template. Two UV-LEDs, a reference LED without PNS and a 200 nm PNS UV-LEDs were fabricated. Scanning Electron microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Photoluminescence (PL) and Light output intensity- Input current- Voltage (L-I-V) characteristics were used to evaluate the ITO-$SiO_2$ nanopattern surface morphology, threading dislocation propagation, PNS crystalline property, PNS optical property and UVLED device performance respectively. The light out put intensity was enhanced by 1.6times@100mA for the LED grown on PNS compared to the reference LED with out PNS.

Investigation on micro/nano filling behavior in LGP injection molding (LGP 사출성형 시의 미세충전 특성해석)

  • Cho, K.C.;Shin, H.G.;Kim, H.Y.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.91-94
    • /
    • 2006
  • In this paper, in order to get micro or nano size optical patterns, an analytical and experimental investigation on a LGP (light guide plate) injection molding process has performed. The LGP, which diffusing and emitting the light from the CCFL or the LEDs to the panel front direction uniformly, typically has an under 1mm thick base substrate and numerous 60 to $170{\mu}m$ width and 6 to $10{\mu}m$ thick dot patterns on it. Generally, the small size LGPs, for mobile devices, have been and are being made of PMMA through the injection molding process. However, the substrate thickness and the dot pattern size are decreasing, it becomes hard to fill the micro to sub-micro cavities completely. To investigate the flow behavior of resin in micro/nano cavities and identify the characteristics of the LGP injection molding process, we carried out the flow analyses with respect to the variations of the substrate thickness, the dot pattern size and the pitch of a cavity.

  • PDF