• Title/Summary/Keyword: Nano patterns

Search Result 435, Processing Time 0.026 seconds

Surface Plasmon Resonance Based on ZnO Nano-grating Structure (산화아연을 이용한 나노격자 구조의 표면 플라즈몬 공명)

  • Kim, Doo-Gun;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Hwe-Jong;Oh, Geum-Yoon;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.922-926
    • /
    • 2010
  • We have investigated the grating coupled surface plasmon resonance (GC-SPR) sensors using ZnO nano-grating structures to enhance the sensitivity of an SPR sensor. The GC-SPR sensors were analyzed using the finite-difference time-domain method. The optimum resonance angles of 49 degrees are obtained in the 150 nm wide grating structure with a period of 300 nm for the ZnO thickness of 30 nm. Then, the ZnO nano-grating patterns were fabricated by using laser interference lithography. The measured resonance angle of nano-grating patterns was around 49 degrees. Here, an enhanced evanescent field is obtained due to the surface plasmon on the edge of the bandgap when the ZnO grating structures are used to excite the surface palsmon.

Nano-mold fabrication for imprinting lithography (나도 Imprinting 을 위한 몰드 제작에 관한 연구)

  • Lee, Jin-Hyung;Lim, Hyun-Uoo;Kim, Tae-Gon;Lee, Seung-Seoup;Park, Jin-Goo;Lee, Eun-Kyu;Kim, Yang-Sun;Han, Chang-Su
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1073-1077
    • /
    • 2003
  • This study aims to investigate the fabrication process of nano silicon mold using electron beam lithography (EBL) to generate the nanometer level patterns by nano-imprinting technology. the nano-patterned mold including 100mm pattern size has been fabricated by EBL with different doses ranged from 22 to 38 ${\mu}C/cm^2$ on silicon using the conventional polymethylmetharcylate(PMMA) resist. The silicon mold is fabricated with various patterns such as circles, rectangles, crosses, oblique lines and mixed forms, The effect of dosage on pattern density in EBL is discussed based on SEM (Scannning Electron Microscopy) analysis of fabricated molds. The mold surface is modified by hydrophobic fluorocarbon (FC) thin films to avoid the stiction during nano-imprinting process.

  • PDF

Excellent properties of Indium Tin Oxide-Carbon Nano tube Nano composites at low temperatures by Nano Cluster Deposition technique

  • Pammi, S.V.N.;Park, Jong-Hyun;Chanda, Anupama;Park, Yeon-Woong;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.7-7
    • /
    • 2010
  • Indium tin oxide (ITO) - SWNT nano crystalline composites was synthesized at low temperature(${\sim}250^{\circ}C$)using Nano Cluster Deposition technique by Metal Orhoganic Chemical Vapor Deposition method. XRD patterns of ITO- SWNT composite shows pure cubic phases without any secondary phase. I-V measurement gives resistance of 12 ohms for Sn doped (3 wt %) indium oxide-SWNT composites. The electrical conductivity of the nano composites is significantly enhanced compared to the SWNT.

  • PDF

Compliant Stage for Nano Patterning Machine (나노 패턴 장비용 컴플라이언스 스테이지)

  • Choi, Kee-Bong;Lee, Jae-Jong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1065-1068
    • /
    • 2003
  • The nano imprint process is one of the next generation lithography has been mentioned as one of major nanoreplication techniques because it is simple process, low cost, high replication fidelity and relatively high throughput. This process requires a surface contact between a template with patterns and a wafer on a stage. After contact, the vertical moving the template to the wafer causes some directional motions of the stage. Thus the stage must move according to the motions of the template to avoid the damage of the transferred patterns on the wafer. This study is to develop the wafer stage with a passive compliance to overcome the damage. This stage is designed with the concept like that it has a monolithic, symmetry and planar 6-DOF mechanism.

  • PDF

Technology for Efficiency Enhancement of Crystalline Si Solar Cell using Nano Imprint Process (나노 임프린트 공정을 이용한 결정형 실리콘 태양전지 효율 향상 기술)

  • Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.30-35
    • /
    • 2013
  • In order to increase cell efficiency in crystalline silicon solar cell, reduction of light reflection is one of the essential problem. Until now silicon wafer was textured by wet etching process which has random patterns along crystal orientation. In this study, high aspect ratio patterns are manufactured by nano imprint process and reflectance could be minimized under 1%. After that, screen printed solar cell was fabricated on the textured wafer and I-V characteristics was measured by solar simulator. Consequently cell efficiency of solar cell fabricated using the wafer textured by nano imprint process increased 1.15% than reference solar cell textured by wet etching. Internal quantum efficiency was increased in the range of IR wave length but decreased in the UV wavelength. In spite of improved result, optimization between nano imprinted pattern and solar cell process should be followed.

Fabrication of Sub-$10{\mu}m$ Screen Printed Organic Thin-Film Transistors on Paper

  • Jo, Jeong-Dai;Yu, Jong-Su;Yun, Seong-Man;Kim, Dong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.896-898
    • /
    • 2009
  • The printed electrodes of organic thin-film transistors (OTFTs) were fabricated by screen printing using nanoparticle silver pastes. The screen printed OTFT corresponds to channel lengths between 7.6 to 82.6 ${\mu}m$ (designed L=10 to 80 ${\mu}m$) on the $150{\times}150mm^2$ paper. The channel length deviations for 40 to 80 ${\mu}m$ patterns were less than 5 %. However, the channel lengths for 10 to 30 ${\mu}m$ patterns were increased by 20 %. The screen printed bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) OTFTs obtained had a field-effect mobility as large as 0.08 (${\pm}0.02$) $cm^2$/Vs, an on/off current ratio of $10^5$ and a subthreshold slope of 1.95 V/decade.

  • PDF

Replication of Patterned Media Using Nano-injection Molding Process (패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.624-627
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by I-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50nm in diameter, 150nm in pitch, and 50nm in depth.

Replication of Patterned Media Using Nano-injection Molding Process (패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.60-63
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth.

  • PDF

Submicron-scale Polymeric Patterns for Tribological Application in MEMS/NEMS

  • Singh R. Arvind;Yoon Eui-Sung;Kim Hong Joon;Kong Hosung;Jeong Hoon Eui;Suh Kahp Y.
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2005
  • Submicron-scale patterns made of polymethyl methacrylate (PMMA) were fabricated on silicon-wafer using a capillarity-directed soft lithographic technique. Polyurethane acrylate (PUA) stamps (Master molds) were used to fabricate the patterns. Patterns with three different aspect ratios were fabricated by varying the holding time. The patterns fabricated were the negative replica of the master mold. The patterns so obtained were investigated for their adhesion and friction properties at nano-scale using AFM. Friction tests were conducted in the range of 0-80 nN. Glass (Borosilicate) balls of diameter 1.25 mm mounted on cantilever (Contact Mode type NPS) were used as tips. Further, micro-friction tests were performed using a ball-on-flat type micro-tribe tester, under reciprocating motion, using a soda lime ball (1 mm diameter) under a normal load of 3,000 mN. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C$) and relative humidity ($45{\pm}5\%$). Results showed that the patterned samples exhibited superior tribological properties when compared to the silicon wafer and non-patterned sample (PMMA thin film) both at the nano and micro-scales, owing to their increased hydrophobicity and reduced real area of contact. In the case of patterns it was observed that their morphology (shape factor and size factor) was decisive in defining the real area of contact.

Fabrication of 2D Bravais Nano Pattern and Growth of ZnO Nano Rods with Photonic Crystal Effect (2차원 Bravais Lattice를 가지는 나노 패턴 제조 및 광결정 효과를 가지는 ZnO 나노 기둥 성장)

  • Kim, Tae-Un;Moon, Jong-Ha;Kim, Seon-Hoon;Kim, Doo-Gun;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.697-702
    • /
    • 2011
  • Two-dimensional (2D) nano patterns including a two-dimensional Bravais lattice were fabricated by laser interference lithography using a two step exposure process. After the first exposure, the substrate itself was rotated by a certain angle, $90^{\circ}$ for a square or rectangular lattice, $75^{\circ}$ for an oblique lattice, and $60^{\circ}$ for a hexagonal lattice, and the $90^{\circ}$ and laser incident angle changed for rectangular and the $45^{\circ}$ and laser incident angle changed for a centered rectangular; we then carried out a second exposure process to form 2D bravais lattices. The band structure of five different 2D nano patterns was simulated by a beam propagation program. The presence of the band-gap effect was shown in an oblique and hexagonal structure. The oblique latticed ZnO nano-photonic crystal array had a pseudo-bandgap at a frequency of 0.337-0.375, 0.575-0.596 and 0.858-0.870. The hexagonal latticed ZnO nano-crystallite array had a pseudo-bandgap at a frequency of 0.335-0.384 and 0.585-0.645. The ZnO nano structure with an oblique and hexagonal structure was grown through the patterned opening window area by a hydrothermal method. The morphology of 2D nano patterns and ZnO nano structures were investigated by atomic force microscopy and scanning electron microscopy. The diameter of the opening window was approximately 250 nm. The height and width of ZnO nano-photonic crystals were 380 nm and 250 nm, respectively.