• 제목/요약/키워드: Nano oxide layer

검색결과 284건 처리시간 0.029초

Cr2O3 및 Mn2O3의 코팅에 의한 Core-Shell 구조의 BaTiO3 분말 제조 (Preparation of Core-Shell Structured BaTiO3 Powder Via Coating of Cr2O3 and Mn2O3)

  • 권병수;이혜은;장정윤;이상길;정인재;조영상;박태진;최광진
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.99-105
    • /
    • 2008
  • 본 연구에서는 MLCC용 $BaTiO_3$에 첨가되는 $Cr_2O_3$$Mn_2O_3$의 나노코팅에 의한 core-shell 구조의 $BaTiO_3$ 분말을 제조하였다. 예비실험을 통해서 $KMnO_4$$K_2Cr_2O_4$ 그리고 sulfur를 사용하는 최적의 액상반응조건이 확립되었다. 본 연구에서는 두 첨가제 분말을 합성하였고 동일한 반응조건으로 두 첨가제를 $BaTiO_3$ 분말표면에 코팅하였다. 코팅은 one-step과 two-step의 두 방법으로 구분하여 시행하였고 그 결과를 분석 비교하였다. 결론적으로 말해서, $Cr_2O_3$$Mn_2O_3$의 두 첨가제는 용이한 반응조건에서 높은 수율로 우수한 품질의 코팅막을 형성하므로써, 첨가제 함량과 코팅막 특성의 정밀한 조절이 용이함을 보여주었다.

Effects of Hole Transport Layer Using Au-ionic Doping SWNT on Efficiency of Organic Solar Cells

  • Min, Hyung-Seob;Jeong, Myung-Sun;Choi, Won-Kook;Kim, Sang-Sig;Lee, Jeon-Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.434-434
    • /
    • 2012
  • Despite recent efforts for fabricating flexible transparent conducting films (TCFs) with low resistance and high transmittance, several obstacles to meet the requirement of flexible displays still remain. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. Recently, it has been demonstrated that acid treatment is an efficient method for surfactant removal. However, the treatment has been reported to destroy most SWNT. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance by Au-ionic doping treatment on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effects of hole transport interface layer using Au-ionic doping SWNT on the performance of organic solar cells were investigated.

  • PDF

펨토초 레이저와 나노초 레이저를 이용한 ITO Glass의 어블레이션 비교 연구 (A Comparative Study of ITO Glass Ablation Using Femtosecond and Nanosecond Lasers)

  • 전진우;신영관;김훈영;최원석;지석영;강희신;안상훈;장원석;조성학
    • 한국광학회지
    • /
    • 제28권6호
    • /
    • pp.356-360
    • /
    • 2017
  • ITO는 높은 전기 전도도와 가시광선, 근적외선 영역에서 투명성을 가진다. LCD, OLED 등을 포함한 광학에 적용되는 부품들의 제조에 투명전극으로 ITO가 사용되고 있다. 가시광선 영역에서의 투명성과 높은 전도도 때문에 다양한 전기, 디스플레이 센서의 전극으로 이용되었다. 한 가지 사안은 기판의 특성에 충격없이 ITO, 금속 필름같은 특정한 영역의 층을 제거하는 부분이다. 레이저를 사용한 유리 위의 ITO 제거는 기존 방법에 비해 친환경적이다. 본 연구는 펨토초 레이저와 나노초 레이저를 사용하여 ITO를 제거하는 비교분석이다.

해양산업시설 배출 HNS 모니터링을 위한 고감도 금속산화물 나노입자 센서에 대한 연구 (Study on High Sensitivity Metal Oxide Nanoparticle Sensors for HNS Monitoring of Emissions from Marine Industrial Facilities)

  • 이창한;안상수;허유나;조영지;장지호;이상태;오상우;이문진
    • 해양환경안전학회지
    • /
    • 제28권spc호
    • /
    • pp.30-36
    • /
    • 2022
  • 수처리 후 직접 해양으로 배출하는 산업시설 등에서 Hazardous and Noxious Substance (HNS) 농도 변화를 연속 자동 측정하기 위한 센서의 기본적 성능으로 상온에서도 ppb 수준의 검출이 가능한 센서가 필요하다고 판단하여 기존의 센서의 감도를 높이기 위한 방법을 제안하였다. 우선 나노입자 박막에 전도성 탄소계 첨가물을 이용하여 필름의 전도도를 높이는 방법과 촉매 금속을 이용하여 표면에서의 이온 흡착도를 높이는 방법에 대해서 각각 연구하였다. 전도성 개선을 위해서 ITO 나노입자를 활용한 필름에 carbon black을 첨가물로 선택하여, 첨가물 함유량에 따른 센서의 성능변화를 관찰하였다. 그 결과 CB 함량 5 wt% 정도에서 전도성 증가에 의한 저항과 응답시간의 변화를 관찰할 수 있었고, 유기용제를 대상으로 한 실험에서 검출하한은 250 ppb 정도까지 낮아지는 것을 확인하였다. 또한 액체 중 이온 흡착도를 높이기 위하여 센서 표면에 촉매로 Au를 스퍼터로 제작한 표면 촉매층을 형성한 시료를 이용한 실험에서 센서의 응답은 20% 이상 증가하고 평균 검출하한은 61 ppm까지 낮아지는 것을 확인하였다. 이 결과로부터 금속산화물 나노입자를 활용한 화학저항형 센서가 상온에서도 수십 ppb 정도의 HNS를 검출할 수 있다는 것을 확인하였다.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • 유태희;김정혁;상병인;최원국;황도경
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Metal과 Metal Oxidefh 구성된 복합구조의 Peel Strength (Peel strengths of the Composite Structure of Metal and Metal Oxide Laminate)

  • 신형원;정택균;이효수;정승부
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.13-16
    • /
    • 2013
  • 양극산화(anodization)공정으로 제작된 규칙성 나노구조의 다공성 산화알루미늄(Aluminum Anodic Oxide, AAO)는 공정이 적용된 LED 모듈은 비교적 쉽고 경제적이므로 최근 LED용 방열소재로 응용하기 위하여 다양하게 연구가 진행되고 있다. 일반적으로 LED 모듈은 알루미늄/폴리머/구리 회로층으로 구성되며 절연체 역할을 하는 폴리머는 히트스프레더로 구성되어있다. 그러나 열전도도가 낮은 폴리머로 인하여 LED부품의 열 방출이 원활하지 못하므로 LED의 수명단축 및 오작동에 영향을 미친다. 따라서, 본 연구에서는 폴리머 대신 상대적으로 열전도도가 우수한 AAO를 양극산화 공정으로 제작하여 히트스프레더(heat spread)로 사용하였다. 이때, AAO와 금속인 구리 회로층간의 접착력을 향상시키기 위하여 스퍼터링 DBC(direct bonding copper)법으로 시드층(seed layer)을 형성한 뒤 최종적으로 전해도금공정으로 구리회로층을 형성하였다. 본 연구에서는 양극 산화공정으로 AAO와 금속간의 접착강도를 개선하여 1.18~1.45 kgf/cm와 같은 우수한 peel strength 값을 얻었다.

유도결합플라즈마를 이용한 TaN 박막의 식각 특성 (Etching Property of the TaN Thin Film using an Inductively Coupled Plasma)

  • 엄두승;우종창;김동표;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF

Effect of few-walled carbon nanotube crystallinity on electron field emission property

  • Jeong, Hae-Deuk;Lee, Jong-Hyeok;Lee, Byung-Gap;Jeong, Hee-Jin;Lee, Geon-Woong;Bang, Dae-Suk;Cho, Dong-Hwan;Park, Young-Bin;Jhee, Kwang-Hwan
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.207-217
    • /
    • 2011
  • We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

Ti-6Al-4V 합금에 2nd ATO 처리 후 플라즈마 전해 산화법에 의한 생체활성표면형성 (Formation of Bioactive Surface by PEO-treatment after 2nd ATO Technique of Ti-6Al-4V Alloy)

  • Lim, Sang-Gyu;Cho, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.74-74
    • /
    • 2018
  • Ti-6Al-4V alloys have been widely used as orthopedic materials because of their excellent corrosion resistance and mechanical properties. However, it does not bind directly to the bone, so it requires a surface modification. This problem can be solved by nanotube and micropore formation. Plasma electrolytic oxidation (PEO) treatment for micropore, which combines high-voltage spark and electrochemical oxidation, is a new way of forming a ceramic coating on light metals such as titanium and its alloys. This method has excellent reproducibility and can easily control the shape and size of the Ti alloy. In this study, formation of bioactive surface by PEO-treatment after $2^{nd}$ ATO technique of Ti-6Al-4V alloy was invesgated by various instrument. Nanotube oxide surface structure was formed on the surface by anodic oxidation treatment in 0.8 wt.% NaF and 1M $H_3PO_4$ electrolytes. After nanotube formation, nanotube layer was removed by ultrasonic cleaning. PEO-treatment was carried out at 280V for 3 minutes in the electrolytic solution containing the bioactive substance (Mg, Zn, Mn, Sr, and Si). The surface of Ti-6Al-4V alloy was observed by field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan). An energy dispersive X-ray spectrometer (EDS, Inca program, Oxford, UK) was used to analyze the spectra of physiologically active Si, Mn, Mg, Zn, and Sr ions. The PEO film formed on the Ti-6Al-4V alloy surface was characterized using an X-ray diffractometer (TF-XRD, X'pert Philips, Netherlands). It is confirmed that bioactive ions play an essential role in the normal bone growth and metabolism of the human skeletal tissues.

  • PDF