• Title/Summary/Keyword: Nano layer

Search Result 1,318, Processing Time 0.033 seconds

ON THE SURFACE CHARACTERISTICS AND STABILITY OF IMPLANT TREATED WITH ANODIZING OXIDATION (양극산화 처리한 임플랜트의 표면 특성 및 골유착 안정성에 관한 연구)

  • Kim, Won-Sang;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.549-560
    • /
    • 2006
  • Purpose : This experiment examined the effects of anodization on commercially pure titanium implant fixtures. Material & methods : The implant fixtures were anodized at three different voltage levels, producing three different levels of oxidation on the surface of the fixure. Implant were divided into four groups according to the level of oxidation. Group 1 consist of the control group of machined surface implants, Group 2 implants were treated by anodizing to 100 voltage, Group 3 implants were treated by anodizing oxidation to 200 voltage Group 4 implants were treated by anodizing oxidation to 350 voltage. Surface morphology was observed by Scanning Electron Microscope(SEM) and the surface roughness was measured using NanoScan $E-1000^{\circledR}$. Implantation of the fixtures were performed using New Zealand white rabbits. $Periotest^{\circledR}$ value(PTV) resonance frequency analysis(RFA), and removal torque were measured in 0, 2, 4, 8, 12 weeks after implantation. Results : The results of the study were as follows: 1. Values for the measured surface roughness indicate statistically significant differences in Ra, Rq, and Rt values among group 1, 2, 3, and 4 at the top portion of the thread,(p<0.05) while values at the base of the threads indicated no significant difference in these values. 2. A direct correlation between the firming voltage, and surface roughness and irregularities were observed using scanning electron microscope. 3. No statistically significant differences were found between test groups regarding $Periotest^{\circledR}$ values. 4. Analysis of the data produced by RFA, significant differences were found between group 1 and group 4 at 12 weeks after implantation.(p<0.05) Conclusions : In conclusion, no significant differences could be found among test groups up to a certain level of forming voltage threshold, beyond this firming voltage threshold, statistically significant differences occurred as the surface area of the oxide layer increased with the increase in surface porosity, resulting in enhanced bone response and osseointegration.

Pilot-Scale Simulation of Desalination Process Using Water Integrated Forward Osmosis System (물통합형 정삼투 시스템을 이용한 파일럿 스케일 담수 공정 모사)

  • Kim, Bongchul;Hong, Seungkwan;Choi, Juneseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.403-408
    • /
    • 2017
  • In these days, wastewater reclamation and seawater desalination play essential role in addressing the challenge of worldwide water scarcity. Particularly, reverse osmosis (RO) for seawater desalination process is commonly used due to less energy consumption than conventional thermodynamic systems. However, membrane fouling and electrical energy consumption during operation of RO system for seawater desalination haver continued to be a obstruction to its application. In this study, therefore, wastewater secondary effluent is used for osmotic dilution of seawater. Firstly, fouling behaviour of RO by simulating wastewater effluent in osmotic dilution process was measured and we calculated energy consumption of overall desalination process by theoretical equations and commercial program. Our results reveal that RO membrane fouling can be efficiently controlled by pre-treatment systems such as nano filtration (NF) or forward osmosis (FO) process. Especially FO system for osmotic dilution process is a non-pressurized membrane system and, therefore, the operating energy consumption of overall desalination system was the lowest. Moreover, fouling layer on FO membrane is comparatively weak and reversible enough to be disrupted by physical cleaning. Thus, RO system with low salinity feed water through FO process is possible as a less energy consuming desalination system with efficient membrane fouling control.

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.

Growth and characterization of periodically polarity-inverted ZnO structures grown on Cr-compound buffer layers

  • Park, J.S.;Goto, T.;Hong, S.K.;Chang, J.H.;Yoon, E.;Yao, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.259-259
    • /
    • 2010
  • Periodically polarity inverted (PPI) ZnO structures on (0001) Al2O3 substrates are demonstrated by plasmas assisted molecular beam epitaxy. The patterning and re-growth methods are used to realize the PPI ZnO by employing the polarity controlling method. For the in-situ polarity controlling of ZnO films, Cr-compound buffer layers are used.[1, 2] The region with the CrN intermediate layer and the region with the Cr2O3 and Al2O3 substrate were used to grow the Zn- and O-polar ZnO films, respectively. The growth behaviors with anisotropic properties of PPI ZnO heterostructures are investigated. The periodical polarity inversion is evaluated by contrast images of piezo-response microscopy. Structural and optical interface properties of PPI ZnO are investigated by the transmission electron microcopy (TEM) and micro photoluminescence ($\mu$-PL). The inversion domain boundaries (IDBs) between the Zn and the O-polar ZnO regions were clearly observed by TEM. Moreover, the investigation of spatially resolved local photoluminescence characteristics of PPI ZnO revealed stronger excitonic emission at the interfacial region with the IDBs compared to the Zn-polar or the O-polar ZnO region. The possible mechanisms will be discussed with the consideration of the atomic configuration, carrier life time, and geometrical effects. The successful realization of PPI structures with nanometer scale period indicates the possibility for the application to the photonic band-gap structures or waveguide fabrication. The details of application and results will be discussed.

  • PDF

리모트 플라즈마 원자층 증착 기술 및 high-k 응용

  • Jeon, Hyeong-Tag;Kim, Hyung-Chul
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.6.1-6.1
    • /
    • 2010
  • 원자층 증착 기술 (Atomic Layer Deposition)은 기판 표면에서 한 원자층의 화학적 흡착 및 탈착을 이용한 nano-scale 박막 증착 기술이기 때문에, 표면 반응제어가 우수하며 박막의 물리적 성질의 재현성이 우수하고, 대면적에서도 균일한 두께의 박막 형성이 가능하며 우수한 계단 도포성을 확보 할 수 있다. 최근 ALD에 의한 박막증착 방법 중 플라즈마를 이용한 ALD 증착 방법에 대한 다양한 연구가 진행되고 있다. 플라즈마는 반응성이 좋은 이온과 라디컬을 생성하여 소스간 반응성을 좋게 하여, 소스 선택의 폭을 넓어지게 하고, 박막의 성질을 좋게 하며, 생산성을 높일 수 있는 장점이 있다. 그러나 플라즈마를 사용함으로써 플라즈마 내에 이온들이 가속되서 박막 증착 중에 기판 및 박막에 손상을 입혀 박막 특성을 열화 시킬 가능성이 있다. 따라서 플라즈마 발생 영역을 기판으로부터 멀리 떨어뜨린 원거리 플라즈마 원자층 공정이 개발 되었다. 이 기술은 플라즈마에서 생성된 ion이 기판이나 박막에 닫기 전에 전자와 재결합 되거나 공정 chamber에서 소멸하여 그 영향을 최소하고 반응성이 좋은 라디칼과의 반응만을 유도하여 향상된 막질을 얻을 수 있도록 하였다. 따라서 이 원거리 플라즈마 원자층 증착기술은 나노 테크놀러지 소자 개발하기 위한 나노 박막 기술에 있어서 그 활용이 점점 확대될 것이다. 그 적용으로써 리모트 플라즈마 원자층 증착 방법을 이용한 고유전 물질 개발이 있다. 반도체 소자의 고집적화 및 고속화가 요구됨에 따라 집적회로의 크기를 혁신적으로 축소하여 스위칭 속도(switching speed)를 증가시키고, 전력손실 (power dissipation)을 줄이려는 시도가 이루어지고 있다. 그 중 하나로 고유전율 절연막은 트렌지스터 소자의 스케일링 과정에 수반하여 커지는 게이트 누설 전류를 억제하기 위한 목적으로 도입되었다. 유전율이 크면 동일한 capacitance를 내는데 필요한 물리적인 두께를 늘릴 수 있어 전자의 tunneling을 억제할 수 있고 전력손실을 줄일 수 있기 때문이다. 이와 같은 고유전율 물질이 게이트 산화막으로 사용되기 위해서 높은 유전상수 열역학적 안정성, 낮은 계면 전하밀도, 낮은 EOT, 전극 물질과의 양립성 등의 특성이 요구되는데, 이에 따라 많은 유전물질에 대한 연구가 진행되었다. 기존 gata oxide를 대체하기 위한 가장 유력한 후보 재료로 주목 받고 있는 high-k 물질들로는 Al2O3, HfO2, ZrO2, La2O3 등이 있다. 본 발표에서는 ALD의 종류에 따른 기술을 소개하고 그 응용으로 고유전율 물질 개발 연구 (고유전율 산화물 박막의 증착, 고유전율 산화물의 열적 안정성 평가, Flatband 매카니즘 규명, 전기적 물리적 특성 분석)에 대해서 발표 하고자 한다.

  • PDF

Bone-like Apatite Formation on Ultrafine-Structure in Modified Electrolytic Solution

  • Jang, Jae-Myung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.155-155
    • /
    • 2017
  • Surface modifications are commonly utilized to adjust the properties of the titanium and its alloy surface to the specific needs of the medical applications, but there are disadvantages such as poor osteoconductive properties and low adhesion of bone cell to implant surface. In order to improve these disadvantages, changes in surface properties have an important effect on osseointegration during implantation. In this paper we applied new technological method for improving a unique surface modification using the characteristic of an electrolytic Solution. Thus, in the electrolyte containing NaF in Na2SO4, TiO2 nanoporous was uniformly formed, and HAp nanoparticles were electrodeposited around the TiO2 nanopores, but in the electrolyte containing NH4F in (NH4)H2PO4, the coarse protrusions including HAp nano particles were regularly deposited onto the TiO2 barrier layer. The surface characteristics and the distributed elements and have been investigated by EDS analysis, and ultra-fine structure of surface are carried out using FE-SEM. To investigate the behavior of the anion, the analysis of chemical states was performed by XPS, and the narrow spectrums for Ti2P, Ca 2p, and P 2p seems to be almost similar depending on the characteristics of the electrolyte solution respectively. In addition, Ca 2p spectrum could be resolved into two peaks for Ca 2p3/2 and 2p1/2 at 347.4 and 351.3 eV, which are related to hydroxyapatite. And, the P peak can also be deconvoluted into two peaks for P1/2 and P3/2 levels with binding energy 134.2 and 133.4 eV, respectively. From the result of soaking test, the apatite morphologys were well-formed onto the modified surface according to the different conditions.

  • PDF

Characterization of the Biogenic Manganese Oxides Produced by Pseudomonas putida strain MnB1

  • Jiang, Shaofeng;Kim, Do-Gun;Kim, Jeong-Hyun;Ko, Seok-Oh
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.183-190
    • /
    • 2010
  • Biogenic Mn oxides are expected to have great potential in the control of water pollution due to their high catalytic activity, although information on biological Mn oxidation is not currently sufficient. In this study, the growth of a Mn oxidizing microorganism, Pseudomonas putida MnB1, was examined, with the Mn oxides formed by this strain characterized. The growth of P. putida MnB1 was not significantly influenced by Mn(II), but showed a slightly decreased growth rate in the presence of Pb(II) and EE2, indicating their insignificant adsorption onto the cell surface. Mn oxides were formed by P. putida MnB1, but the liquid growth medium and resulting biogenic solids were poorly crystalline, nano-sized particles. Biogenic Mn oxidation by P. putida MnB1 followed Michaelis-Menten kinetics, with stoichiometric amounts of Mn oxides formed, which corresponded with the initial Mn(II) concentration. However, the formation of Mn oxides was inhibited at high initial Mn(II) concentration, suggesting mass transfer obstruction of Mn(II) due to the accumulation of Mn oxides on the extracellular layer. Mn oxidation by P. putida MnB1 was very sensitive to pH and temperature, showing sharp decreases in the Mn oxidation rates outside of the optimum ranges, i.e. pH 7.43-8.22 and around 20-$26^{\circ}C$.

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

One-dimensionally Ordered Array of Co and Fe Nanoclusters on Carburized-W(110) via Template Assisted Self-Assembly

  • Kim, Ji-Hyun;Yang, Serlun;Kim, Jae-Sung;Lukashev, Pavel;Rojas, Geoffrey;Enders, Axel;Sessi, Violetta;Honolka, Jan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.135-136
    • /
    • 2012
  • Carbon atoms near the surface of W(110) induce reconstructions such as $R(15{\times}12)$ -C/W(110) which consists of two characteristic parts, one square shaped and bright protrusion and two smaller ones. In the atomic resolution STM image, the bigger protrusion shows the periodicities of clean W(110), indicating that it is almost carbon poor region. The smaller protrusion contains hexagonal carbide surface layer of ${\alpha}$-W2C on W(110). Employing this carburized W(110) as templates, we grow Co and Fe clusters of less than ten atoms. Due to the selectivity of bonding sites, growth of larger cluster is highly unfavorable for Co and the size of clusters is very uniform. Since Co atoms prefer to sit on the bigger protrusion rather than smaller one, Co cluster can be arranged one-dimensionally in $R(15{\times}12)$-C/W(110) with quite uniform size distribution. However, Fe clusters sit on both sites without favored site, but still with uniform size distribution. On the other hand, Fe clusters can be grown with quasi one-dimensional order in $R(15{\times}3)$-C/W(110), which consists of only smaller protrusions. We investigate the magnetic properties of the ordered nano-sized clusters. Experiments using XMCD reveals little magnetic moment of Co cluster on $R(15{\times}12)$-C/W(110). This observation is consistent with the predictions of our first principles calculations that small Co clusters can be nonmagnetic or antiferromagnetic with low mean magnetic moment per atom.

  • PDF

Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements (탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성)

  • Kang, Hyunsuk;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.